
WebSpa

Single HTTP/S Request Authorisation Web Knocking

Specification Guide

v0.8

Oliver Merki, Yiannis Pavlosoglou, Pawe l Goleń, Joël Rouiller, Patryk Arciszewski

November 21, 2014

seleucus.net

Web-Spa Specification Guide v0.7

Table of Content

1 Introduction 4
1.1 This Guide & Other Supporting Documentation 4
1.2 What is WebSpa? . 4
1.3 Document Structure . 5

2 Use Cases 6
2.1 Objective . 6
2.2 Actors . 6

3 Requirements Analysis 8
3.1 Customer Expectations . 8
3.2 Project and Enterprise Constraints . 10
3.3 External Constraints . 10
3.4 Operational Scenarios . 11
3.5 Measure of Effectiveness (MoEs) . 11
3.6 System boundaries . 11
3.7 Interfaces . 12
3.8 Utilization environments . 14
3.9 Life cycle . 14
3.10 Functional Requirements . 15
3.11 Performance requirements . 16
3.12 Modes of operation . 16
3.13 Technical performance measures . 16
3.14 Physical characteristics . 17
3.15 Human systems integration . 18

4 The Request 19
4.1 Request Structure . 19
4.2 Element 1: Pass-knock . 20
4.3 Element 2: Action-knock . 22
4.4 Design Rationale . 24
4.5 Data Processing Steps . 25

5 Attack Models 26
5.1 Hypothesis . 26
5.2 Attack Trees . 27
5.3 Timed Brute Force Attacks . 28
5.4 Replay Attacks . 29
5.5 Man-in-the-middle Attacks . 30
5.6 Availability Attacks . 31
5.7 Administrator Collusion Attacks . 32
5.8 Vertical Privillege Escalation Attacks . 33

2

Web-Spa Specification Guide v0.7

5.9 Cryptanalytic Attacks . 34
5.10 Rubber-hose Cryptanalysis . 34

6 RFC & Other Related Work 35
6.1 Fwknop and the Power of SPA . 35
6.2 Spring StandardPasswordEncoder Class 35
6.3 RFC 6238 . 36

7 Conclusions 37

8 References 38

9 Abbreviations 39

3

Web-Spa Specification Guide v0.7

1 Introduction

This document provides a detailed description of the elements that constitute the Hyper-
text Transfer Protocol (HTTP) Uniform Resource Locator (URL) request issued from
the client of WebSpa to the corresponding web server. This introductory section de-
scribes where this specification guide fits in the wider remit of WebSpa documentation;
it also provides an outline on how the sections of this document are ordered and how
they can be read.

1.1 This Guide & Other Supporting Documentation

The discrepant event discussed herein is web knocking. This document is one of three,
with the purpose of describing how WebSpa can be used. The three documents are:

• WebSpa Administration Guide This document describes how to setup and use
the WebSpa server. It details how to create new users and add new action numbers
with respective Operating System (O/S) commands assigned to them

• WebSpa Specification Guide This document describes the actual design de-
tailing the use case, specification, requirements and actual attacks, which this tool
has been engineered to withstand

• WebSpa User Guide This document describes how to use the WebSpa client for
issuing commands through a URL request to a web server.

The specification guide aims to enable anyone who would be interested in implementing
their own version of WebSpa to do so.

1.2 What is WebSpa?

WebSpa is a complete client/server tool that allows you to send premeditated commands
to the system your web server is running on.

4

Web-Spa Specification Guide v0.7

1.3 Document Structure

The scope of this specification guide is presented in six consecutive sections, with a
number of sub-sections. Each section stands as an independent entity and can be read
alone. Each section also has a relation to other ones. The following lattice provides the
dependencies between individual sections:

Figure 1: Structure of the document. Looks like a molecule - it’s not.

1. Introduction - An introductory section, describing the document structure as
well as the other type of documentation available

2. Use Cases - This section presents in UML the actors and their interactions with
WebSpa

3. Requirements - Listing the non-functional as well as functional requirements

4. The Request - Describes the structure of the request, how it is derived and what
is the method of processing this request

5. Attack Models - List the types of attacks considered within the design

6. Related RFC Work - Looks at similar RFCs and examines their application
within WebSpa

This document concludes with a section summarising the findings of the sections stated
above.

5

Web-Spa Specification Guide v0.7

2 Use Cases

2.1 Objective

Similarly to traditional network port-knocking schemes, WebSpa aims to create a covert
channel [?] of communication for O/S commands, over the web application layer. This
channel is by no means bi-directional: It is only the client that can issue commands to
the server. The inverse i.e. the server issuing commands to the client, is not an option
within the current version.

What’s more, the covert channel of communication established with WebSpa is very
limited and can only be used for a set of premeditated actions. These actions must have
been defined as O/S commands, within the server-side component of WebSpa, prior
to a user attempting to issue a request. As a result, residues of steganography within
WebSpa are kindly dismissed: Like TCP/IP, the protocol exhibits ”sufficient structure
and non-uniformity to be efficiently and reliably differentiated from unmodified cipher-
text”. [?]

Even though facilitating a very specific covert channel over the web application layer,
WebSpa should not be utilized for steganographic purposes. The objective of the protocol
is for the server to execute, under certain conditions, an O/S command. Note that direct
O/S command execution is not an option. The conditions under which a command will
execute are that it is already known and pre-defined, it is received by the server within
a set time window of being issued by the client and that the corresponding user it
authorized to execute it. We will examine each of the above controls in greater detail in
the sections that follow.

The system definition for WebSpa is modelled on that of an existing website or web
application, which any user can browse to, using their respective browser.

2.2 Actors

Based on this, we can model WebSpa as having four (4) actors in total, three (3) of
which are human, vs. one (1) which is an external system. This is gives us the total of
users and respective external systems with which WebSpa interacts with.

1. Website User This actor has the role of a normal website user browsing the
given website on which WebSpa is running on. They are expected to be using a
web browser for issuing HTTP/S requests and receiving respective responses

2. WebSpa User More specific to the generalized actor ’Website User’, this actor has
the role of issuing specially crafted HTTP/S requests, which enable O/S system
commands to be executed server-side.

6

Web-Spa Specification Guide v0.7

3. WebSpa Administrator The actor responsible for setting up WebSpa users with
respective pass-phrases and assigning O/S commands to action numbers. The
administrator shares a secret pass-phrase with each user. This pass-phrase has
been exchanged securely, using a different medium of communication with the
user.

4. Run O/S Command The ability ”of the website” to issue O/S commands to
the host operating system, in the event of receiving a correctly crafted WebSpa
request via HTTP/S.

Based on these actors, the following diagram depicts the use case for WebSpa, as a
generalization of the use case of a website user browsing a particular website.

Figure 2: The WebSpa Use Case as an Extension of a Website Use Case

Overall, we can see that WebSpa is an encapsulating system that is expected to operate
and function in the presence of a legitimate publicly available website. Certain types of
specially crafted requests issued to the site by a user of it will have the ability to execute
respective O/S commands.

In order for that to take place, it is expected that an administrator of WebSpa is
placed responsible for managing the respective users who have access to issue O/S com-
mands.

7

Web-Spa Specification Guide v0.7

3 Requirements Analysis

The procedure followed in the analysis of requirements for WebSpa is based on the
15 requirements analysis tasks listed in IEEE P1220 [?]. The key words ”MUST”,
”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD
NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [?].

An implementation is not compliant if it fails to satisfy one or more of the MUST or
REQUIRED level requirements for the protocols it implements. An implementation that
satisfies all the MUST or REQUIRED level and all the SHOULD level requirements for
its protocols is said to be ”unconditionally compliant”; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its protocols is said
to be ”conditionally compliant.”

3.1 Customer Expectations

The likely customer base of WebSpa is due to be paranoid individuals, with familiarity
in the area of system administration. They will want something that works and does
exactly what it says on the tin: nothing more; nothing less.

Using WebSpa is an action based on trust between the user and the administrator. As
such, we begin by defining the requirements between these two type of customers in
order for WebSpa to function correctly.

ID Date Version Description

0101 13-Jan-2013 0.5 Each WebSpa user MUST be issued with a single
secret pass-phrase, given to them once and in a typical
out-of-band fashion, by the WebSpa administrator.

0102 13-Jan-2013 0.5 Each WebSpa user SHOULD be given a list of avail-
able actions by the WebSpa administrator.

Requirements 101 & 102 reflect also the design of WebSpa in being a 1 Factor Authenti-
cation (1FA) system. This implies that the users are only tied into the system by means
of something they know and not by means of something they have or are. A number
of discussions taken place with regards to introducing a second factor of authentication.
These are intentionally omitted from this document.

Given that WebSpa requests are time dependant variables, the condition for knowing
the current time in minutes exists.

8

Web-Spa Specification Guide v0.7

ID Date Version Description

0103 27-Apr-2013 0.7 Both the WebSpa user and administrator MUST
know or be able to derive the current Unix time (i.e.,
the number of seconds elapsed since midnight Uni-
versal Time Coordinated (UTC) of January 1, 1970)
in minutes.

Given that it is assumed any attacker will also be able to derive the current time in
minutes, the confidentiality of any WebSpa request assumes the secrecy of the pass-
phrase.

ID Date Version Description

0104 28-Apr-2013 0.7 Both the WebSpa user and administrator MUST
either share the same secret pass-phrase or the knowl-
edge of a secret transformation to generate a shared
secret pass-phrase.

0105 28-Apr-2013 0.7 Each WebSpa user MUST have a unique secret pass-
phrase, known only to them and the WebSpa admin-
istrator.

0106 28-Apr-2013 0.7 The secret pass-phrase SHOULD be randomly gener-
ated or derived using a key derivation algorithms.

0107 28-Apr-2013 0.7 The secret pass-phrase MAY be stored in a tamper-
resistant device and SHOULD be protected against
unauthorized access and usage.

Finally, we stress the importance of the secret pass-phrase to carry enough entropy:

ID Date Version Description

0108 28-Apr-2013 0.7 Each WebSpa user MUST use a strong secret pass-
phrase. The length of the pass-phrase SHOULD be
at least 128 bits. This document RECOMMENDs a
pass-phrase length of 512 bits.

0109 06-May-2013 0.7 The WebSpa user’s secret pass-phrase MUST sup-
port all UTF-8 characters. This document RECOM-
MENDs a pass-phrase containing letters from foreign
alphabets (e.g. the Greek letter α, or the letter Θ,
etc).

This aims to aid customer expectation to not have simple pass-phrases such as ASCII
based phrases like ’Password!’ being used for web knocking operations. Using UTF-8
characters, even if it is for the purpose of making a phrase ’l33t’, adds a lot more entropy
to each character. Consider as an example ’PαsswΘrδ!’ to ’P4ssw0rd!’.

9

Web-Spa Specification Guide v0.7

3.2 Project and Enterprise Constraints

The constraints present impacting the design of the solutions follow the principle of least
privilege.

ID Date Version Description

0201 27-Apr-2013 0.7 The server implementation of WebSpa MUST
NOT allow for the transmission of any data on the
network.

0202 27-Apr-2013 0.7 The client implementation of WebSpa MUST
NOT allow for the transmission of any data on the
network, without the explicit permission from the
user, granted for each transmission.

For every request received by the WebSpa server, an iterative hashing operation is exe-
cuted on the pass-phrase of each WebSpa user. This hashing operation, despite not being
computationally expensive (see section 5.6 entitled Availability Attacks) does mean that
an upper limit needs to be set on the number of WebSpa users who can exist per WebSpa
server instance.

ID Date Version Description

0203 07-Sep-2013 0.7 The server implementation of WebSpa MUST
NOT be allowed to run with more than 20 WebSpa
users.

We recommend that no more than 20 WebSpa users are registered for a single server
instance of this tool.

3.3 External Constraints

ID Date Version Description

0301 13-Jan-2013 0.7 The WebSpa protocol MUST NOT use UDP.

0302 27-Apr-2013 0.7 The WebSpa protocol MUST be fully RFC 1945
(Hypertext Transfer Protocol – HTTP/1.0) compli-
ant.

0303 09-May-2013 0.7 It is RECOMMENDED that the implementation
of WebSpa is deployed over HTTPS (RFC 2818).

10

Web-Spa Specification Guide v0.7

3.4 Operational Scenarios

There is absolutely no need for WebSpa to have any level of privileged access within the
O/S kernel. Ultimately, WebSpa is a log monitor tool that issues commands to the host
O/S. As such:

ID Date Version Description

0401 13-Jan-2013 0.7 The implementation MUST NOT run in the O/S
kernel.

The administrator of WebSpa is responsible for the commands which are made available
to the users. This does not imply that by default these commands need to have sudo or
other high levels of privilege.

3.5 Measure of Effectiveness (MoEs)

ID Date Version Description

0501 13-Jan-2013 0.7 The protocol MUST establish a client-to-server
channel of communication for issuing O/S commands
over HTTP/S.

3.6 System boundaries

ID Date Version Description

0601 13-Jan-2013 0.7 The WebSpa protocol SHOULD define a single
HTTP request for one O/S command.

0602 05-May-2013 0.7 The WebSpa server MUST allow for O/S commands
to be specified as actions, regardless of which under-
lying O/S it is running on.

11

Web-Spa Specification Guide v0.7

3.7 Interfaces

In this subsection we describe the interfaces WebSpa depends on. Internal interfaces are
those that address elements inside the boundaries established for the system addressed.
These interfaces are generally identified and controlled by the contractor responsible for
developing the system. External interfaces, on the other hand, are those which involve
entity relationships outside the established boundaries. [?] [?]

3.7.1 External Interfaces the JAR requires to run

Operating System
WebSpa only has an indirect dependency on the operating system, as it written in Java.
The operating system must be able to host and run the Java Runtime Environment
(JRE).

ID Date Version Description

0701 16-Jun-2013 0.7 The implementation MUST NOT have any direct
dependencies within the underlying O/S.

0702 16-Jun-2013 0.7 The operating system MUST be able to run the
Java Runtime Environment (JRE) in a current ver-
sion.

Java Runtime Environment
In order to execute WebSpa’s single Java archive file (.jar), the Java Runtime Environ-
ment must be installed on top of the server’s operating system.

ID Date Version Description

0703 16-Jun-2013 0.7 The server implementation MUST run on any
JRE newer than version 1.6.

0704 16-Jun-2013 0.7 The JRE MUST be installed on the server.

Web Server
WebSpa does not accept any direct connections, but is rather designed as a log listener.
When running in server mode, it needs to know and have access to the log file of the
web server.

In server mode, WebSpa also needs to know what the regular expression specifying how
to extract the originating IP Address of the request and the actual URL string is.

12

Web-Spa Specification Guide v0.7

ID Date Version Description

0705 16-Jun-2013 0.7 The server implementation SHOULD be able to
parse log files from any web server.

0706 28-Aug-2013 0.7 The server implementation SHOULD allow for
the location of the web server log file to be speci-
fied in a properties file named:
web-spa-config.properties.

0707 28-Aug-2013 0.7 The server implementation SHOULD allow for
the regular expression ’grepping’ the IP Address and
the URL to be specified in a properties file named:
web-spa-config.properties.

3.7.2 Internal Interface the JAR depends on to run

Config File

ID Date Version Description

0708 16-Jun-2013 0.7 The config file of the server implementation
MUST be named
web-spa-config.properties and be at the time of
launch in the same directory as the jar file of Web-
Spa.

0709 28-Aug-2013 0.7 A default config file for the server implementation
MUST be created during launch if the file
WebSpa-config.properties does not exist in the
same directory relative to the location where the .jar
file resides.

Database Files
In server mode, WebSpa also carries an embedded database, used to store webknocks
received, user pass-phrases and respective actions.

ID Date Version Description

0710 16-Jun-2013 0.7 The database file of the server implementation
MUST be named with the prefix web-spa-db and
be at the time of launch in the same directory as the
jar file of WebSpa.

0711 28-Aug-2013 0.7 The two default database files
web-spa-db.properties & web-spa-db.script
MUST be created during launch if these files do not
exist in the same directory relative to the location
where the .jar file resides.

13

Web-Spa Specification Guide v0.7

Time
A time value is used as a salt for the digest function. Therefore, it is essential that both,
the WebSpa client and the WebSpa server share the same time.

ID Date Version Description

0712 16-Jun-2013 0.7 Both, the client and the server implementations
MUST share the same system time.

0713 16-Jun-2013 0.7 The client and the server implementations
SHOULD use UTC time in order to prevent wrong
calculations caused by differing time zones.

3.8 Utilization environments

ID Date Version Description

0801 13-Jan-2013 0.7 The WebSpa protocol MUST use known crypto-
graphic techniques and be based around the concepts
of a hash commit.

3.9 Life cycle

Despite being described often as a mythical goal, we are going to set the bar at a very
high level when it comes to test cases and code coverage.

ID Date Version Description

0901 13-Jan-2013 0.7 The crypto library code MUST have 100 percent test
code coverage with respective test cases for its func-
tionality.

Future versions of WebSpa should also have a much higher test code coverage, not
focusing solely on the crypto library, but the wider code base of the executable.

Type safety is also very important in the selection of the programming language used to
code the server implementation of WebSpa.

ID Date Version Description

0902 06-May-2013 0.7 The server implementation MUST NOT be writ-
ten in an unsafe language.

14

Web-Spa Specification Guide v0.7

3.10 Functional Requirements

3.10.1 Protocol

ID Date Version Description

1001 13-Jan-2013 0.7 The WebSpa protocol MUST establish a client-to-
server channel of communication for issuing O/S com-
mands over HTTP/S.

1002 13-Jan-2013 0.7 The WebSpa protocol MUST NOT allow for direct
O/S command execution on the server.

1003 13-Jan-2013 0.7 The WebSpa protocol MUST NOT allow for the
server to issue O/S commands to the client.

1004 13-Jan-2013 0.7 Each O/S command MUST be already known by
the WebSpa server before being issued by the client.

1005 31-Jan-2013 0.7 Each WebSpa request MUST result in the execution
of an O/S command only once.

For the benefit of simplicity of the WebSpa protocol and to save system resources when
evaluating incoming requests, it was decided to identify the WebSpa user based on the
pre-shared secret.

ID Date Version Description

1006 21-Jul-2013 0.7 Each shared secret MUST be unique in order to dis-
tinguish the users.

3.10.2 Server

ID Date Version Description

1007 13-Jan-2013 0.7 The server implementation MUST keep a clear
record of O/S commands executed.

1008 13-Jan-2013 0.7 The server implementation MUST have a
single configuration file, located in web-spa-
config.properties relative to the path of the stand-
alone executable.

1009 13-Jan-2013 0.7 The server implementation data MUST have a sin-
gle database file, located in web-spa-db.data rela-
tive to the path of the stand-alone executable.

1010 13-Jan-2013 0.7 The server implementation MUST NOT use libp-
cap and MUST NOT inspect every packet.

1011 31-Jan-2013 0.7 The server implementation MUST NOT have a
new service and MUST NOT bind to any port.

15

Web-Spa Specification Guide v0.7

3.11 Performance requirements

ID Date Version Description

1101 01-May-2013 0.7 The server implementation of WebSpa MUST
have run without human intervention for 100 hours,
averaging 10 valid requests per hour.

1102 01-May-2013 0.7 The server implementation of WebSpa MUST
have run for without human intervention for 1000
hours, without receiving a valid request for at least
3 time intervals of 168 hours.

1103 01-May-2013 0.7 Both the server implementation and the client
implementation SHOULD have a very small mem-
ory and execution footprint. The performance re-
quirements SHOULD be minimal. .

3.12 Modes of operation

As such we have to provide something simple:

ID Date Version Description

1201 27-Apr-2013 0.7 The server implementation of WebSpa SHOULD
be a single executable file.

1202 27-Apr-2013 0.7 The implementation of WebSpa MUST include a
client component, responsible for generating WebSpa
requests.

1203 27-Apr-2013 0.7 The WebSpa server implementation SHOULD in-
clude a component, responsible for monitoring web
server logs for WebSpa requests.

3.13 Technical performance measures

ID Date Version Description

1301 16-Jun-2013 0.7 The server implementation of WebSpa MUST be
executable on a mid-range server.

16

Web-Spa Specification Guide v0.7

3.14 Physical characteristics

Given the above described modes of operation, we can follow very strict guidelines as
to the physical characteristics of the single executable for both the WebSpa client and
server.

ID Date Version Description

1401 08-Jul-2013 0.7 All functionality of the WebSpa executable SHOULD
be contained within the one file.

The above implies that shipping a single jar file as one download, should suffice. What
is more, file size should be taken into account, as we don’t want to over-engineer the
specification. Ergo:

ID Date Version Description

1402 08-Jul-2013 0.7 The file size for the single executable file of WebSpa
SHOULD not exceed a total of 5Mb.

Finally, control should be given to the user to modify and adjust WebSpa to their liking
and needs. The tinkering of WebSpa is most welcome; on the client, there is not too
much to tinker, while on the server there are a few things one can manipulate.

ID Date Version Description

1403 08-Jul-2013 0.7 The client implementation of WebSpa SHOULD
NOT require any additional files present to run.

While on the server matters are a little bit different. There exists a corresponding
configuration file, as well as an embedded database element.

ID Date Version Description

1403 08-Jul-2013 0.7 The server implementation of WebSpa SHOULD
create within the local folder of execution all necessary
files for WebSpa to operate correctly.

As a user of WebSpa you are expected to download a zip file. Documentation aside, this
zip is likely to contain a jar file inside a WebSpa folder. Upon running the client, no
further files, folder or temp files get created. Upon running the server, all required files
get placed in the current directory of execution.

17

Web-Spa Specification Guide v0.7

3.15 Human systems integration

ID Date Version Description

1501 16-Jun-2013 0.7 Both, the server implementation and the client
implementation MUST provide either a command
line interface (CLI), or a graphical user interface
(GUI) to interact with the user.

18

Web-Spa Specification Guide v0.7

4 The Request

In the simplest scenario, a user is attempting to run a pre-defined O/S command on a
standard web server. We refer to this command as an action. For this, the client will
generate a URL from a number of inputs provided by the user; we refer to this as the
WebSpa request.

4.1 Request Structure

The WebSpa request uses a secret pass-phrase and a pre-defined action number to
generate a sequence of one-time (single use) URL characters. One more additional input
is used by the system performing the generation. This is the number of minutes in epoch
(UTC) time.

In summary, three (3) inputs are required in any one time to generate a WebSpa re-
quest.

• [user provided] pass-phrase

• [user provided] action

• [system] UTC time (minutes)

These inputs result in an HTTP Base64 URL-Safe encoded URL being generated. Each
request within the URL has the same identical length of 100 characters, carrying a total
of 75 bytes of data. Each request changes every minute, given the change of the minutes.
The structure of a WebSpa request is as follows:

Figure 3: WebSpa Request Structure

19

Web-Spa Specification Guide v0.7

A WebSpa request consists of two parts. We refer to each of the different parts of the
request as the elements of the WebSpa request and proceed to number them accordingly.
By concatenating the bytes of the two elements together, we obtain a total of 75 bytes
of data. This yields a total of 100 characters of Base64 URL safe encoded bytes for each
request. [?] [?]

In the following sections, we iterate through how each element is derived. Following
that, the design rationale and data processing steps are presented.

4.2 Element 1: Pass-knock

The pass-knock element (not be confused with the user’s pass-phrase) is the result from
the concatenation of one random byte with a truncated SHA-512 hash. The truncated
SHA-512 hash is reduced to 50 bytes in length. Thus, a pass-knock element has a total
length of 51 bytes: 50 from the truncated SHA-512 hash and 1 random byte.

The steps followed to derive the pass-knock are:

1. We use the user’s pass-phrase and the UTC time (minutes)

2. We obtain the UTF-8 bytes from the pass-phrase

3. We obtain the 4 bytes of the current minute

4. We place all the bytes in an array

5. We generate 1 random byte value

6. We concatenate the array with the random byte

7. We SHA512 the above array a total of 1024 times

8. We obtain the first 50 bytes from the above

9. We concatenate the one random byte with the first 50 bytes

In the above steps the UTF-8, concatenate and SHA512 byte functions represent stan-
dard functions. It is worth noting that the order in which the concatenation of any two
byte arrays is important. Obtaining the current minute in a byte array of 4 elements
requires further explanation:

1. We use the current UTC time in minutes

2. We obtain the current number of milliseconds

3. We divide by (60 * 1000)

4. We convert the result into a byte array

5. From this array we obtain the last 4 entries

20

Web-Spa Specification Guide v0.7

These 4 bytes are concatenated to the UTF-8 bytes of the user’s secret pass-phrase.

An example implementation in Java is presented below:

1 pub l i c c l a s s ActionNumberCrypto extends WebSpaUtils {
2

3 pub l i c s t a t i c byte [] getHashedActionNumberInTimeWithSalt (f i n a l
CharSequence passPhrase , f i n a l i n t actionNumber , f i n a l long
currentTimeMinutes , f i n a l byte [] s a l t) {

4

5 byte [] passBytes = passPhrase . t oS t r i ng () . getBytes (Charsets . UTF 8) ;
6 byte [] ac t ionBytes = ByteBuffer . a l l o c a t e (4) . putInt (actionNumber) .

array () ;
7 byte [] t imeBytes = ByteBuffer . a l l o c a t e (8) . putLong (currentTimeMinutes)

. array () ;
8

9 byte [] sor tedBytes = new byte [passBytes . l ength + timeBytes . l ength − 4
+ 1] ;

10 System . arraycopy (passBytes , 0 , sortedBytes , 0 , passBytes . l ength) ;
11 System . arraycopy (timeBytes , 4 , sortedBytes , passBytes . length ,

timeBytes . l ength − 4) ;
12 System . arraycopy (act ionBytes , act ionBytes . l ength − 1 , sortedBytes ,

sor tedBytes . l ength − 1 , 1) ;
13

14 byte [] a l lBy t e s = ArrayUt i l s . addAll (sortedBytes , s a l t) ;
15 byte [] hashedBytes = ArrayUt i l s . subarray (d i g e s t (a l lBy t e s) , 0 , 20) ;
16

17 re turn ArrayUt i l s . addAll (s a l t , hashedBytes) ;
18

19 }

With the method digest() performing a total of 1024 iterations of the SHA-512 algo-
rithm:

1 pub l i c s t a t i c byte [] d i g e s t (byte [] va lue) {
2

3 f o r (i n t i = 0 ; i < 1024 ; i++) {
4 value = Dig e s tUt i l s . sha512 (va lue) ;
5 }
6

7 re turn value ;
8 }

The above implementation uses the class DigestUtils from the Commons Codec (v1.8
API). Any standard implementation for the SHA-512 algorithm can be used as well.

21

Web-Spa Specification Guide v0.7

4.3 Element 2: Action-knock

The action-knock element (not to be confused with the user’s action) is the result from
the concatenation of four random bytes with a truncated SHA-512 hash. The truncated
SHA-512 hash is reduced to 20 bytes in length. Thus, an action-knock element has a
total length of 24 bytes: 20 from the truncated SHA-512 hash and 4 random bytes.

The steps followed to derive the action-knock are:

1. We use the user’s pass-phrase, action and the UTC time (minutes)

2. We obtain the UTF-8 bytes from the pass-phrase

3. We obtain the 1 byte of the user’s action

4. We obtain the 4 bytes of the current minute

5. We place all the bytes in an array

6. We SHA-512 the above array a total of 1024 times

7. We obtain the first 20 bytes from the above

In the above steps the UTF-8, concatenate and SHA-512 byte functions represent stan-
dard functions. Once again, it is worth noting that the order in which the concatenation
of any two byte arrays is important.

The way in which a byte array of 4 bytes is derived from the current minute has been
described in the previous section. The digest function has been also described in the
previous section.

Obtaining the user’s action as a single byte requires further explanation:

1. We use the user’s action (represented as an Integer)

2. We convert the user’s action into a byte array of 4 entries

3. From this array we obtain the last byte entry

This implementation implies that only the numbers [0, 127] inclusive will be converted
to valid byte numbers of equal value. This is because in Java:

1 byte [] ac t ionBytes = ByteBuffer . a l l o c a t e (4) . putInt (127) . array () ;
2 [0 , 0 , 0 , 127]

22

Web-Spa Specification Guide v0.7

While:

1 byte [] ac t ionBytes = ByteBuffer . a l l o c a t e (4) . putInt (128) . array () ;
2 [0 , 0 , 0 , −128]

The single action byte is concatenated to the UTF-8 bytes of the user’s secret pass-phrase
and the 4 time bytes.

An example implementation in Java is presented below:

1 pub l i c s t a t i c byte [] getHashedActionNumberInTimeWithSalt (f i n a l CharSequence
passPhrase , f i n a l i n t actionNumber , f i n a l long currentTimeMinutes ,

f i n a l byte [] s a l t) {
2

3 byte [] passBytes = passPhrase . t oS t r i ng () . getBytes (Charsets . UTF 8) ;
4 byte [] ac t ionBytes = ByteBuffer . a l l o c a t e (4) . putInt (actionNumber) .

array () ;
5 byte [] t imeBytes = ByteBuffer . a l l o c a t e (8) . putLong (currentTimeMinutes)

. array () ;
6

7 byte [] sor tedBytes = new byte [passBytes . l ength + timeBytes . l ength − 4
+ 1] ;

8 System . arraycopy (passBytes , 0 , sortedBytes , 0 , passBytes . l ength) ;
9 System . arraycopy (timeBytes , 4 , sortedBytes , passBytes . length ,

timeBytes . l ength − 4) ;
10 System . arraycopy (act ionBytes , act ionBytes . l ength − 1 , sortedBytes ,

sor tedBytes . l ength − 1 , 1) ;
11

12 byte [] a l lBy t e s = ArrayUt i l s . addAll (sortedBytes , s a l t) ;
13 byte [] hashedBytes = ArrayUt i l s . subarray (d i g e s t (a l lBy t e s) , 0 , 20) ;
14

15 re turn ArrayUt i l s . addAll (s a l t , hashedBytes) ;
16

17 }

23

Web-Spa Specification Guide v0.7

4.4 Design Rationale

At the heart of WebSpa lies a Keep It Simple, Stupid (KiSS) cryptographic commitment
scheme [?] that is used to generate the pass-knock and the action-knock.

WebSpa avoids the use of symmetric keys and also stays well away from any asymmetric
cryptosystems to use the kitchen sink of modern cryptography for a single authorisation
request. There is simply no need for an ’open-sesame’ type of protocol that it is.

What is more, we have eliminated the need for a user name. If the user knows who they
are through a unique pass-phrase to the system, there is no need for a second input to
be provided by them. As the issuing of pass-phrases is regulated by an administrator
and given that the administrator is the regulating body for which O/S commands are
available to the user, we didn’t see the need for the user name field to exist.

In taking the current minute in UTC as input from the system, we ensure that the value
of the pass-phrase is not used without a time-dependant variable, thus varying every 60
seconds.

Like in RFC 6238, entitled TOTP: Time-Based One-Time Password Algorithm, the
WebSpa algorithm for each element is based on the SHA hash algorithm and truncated.
WebSpa uses a stronger variant (i.e. SHA-512) over a total of 1024 iterations.

For each element of WebSpa, a randomly selected input is padded onto the value that
will be SHA-512 hashed a total of 1024 iterations. This randomly selected input is then
transmitted in the clear as part of the WebSpa request and serves as a salt.

To sum up to a total of 75 bytes (100 base64 characters), the first element of WebSpa
(pass-knock) is 51 bytes and the second element (action-knock) is 24 bytes.

A variant of base64 that is URL safe is used for the encoding and decoding of WebSpa
messages. This does not chunk the output. Also, this substitutes the characters + and
/ with - and respectively.

Further analysis on each of the components mentioned above can be found in the section
entitled RFC & Other Related Work.

24

Web-Spa Specification Guide v0.7

4.5 Data Processing Steps

The functional block diagram shown in the figure below illustrates the dataflow from
client to server for WebSpa. This diagram is based on the 1983 IEEE block diagram of
a typical digital communication system.

Figure 4: The functional block diagram of WebSpa

The upper blocks, labelled ’Action’, ’Pass-phrase’, ’SHA-512’ and ’Base64 Encode’ dic-
tate data transformations from the client to the transmitter. The lower blocks dictate
the signal and data transformations from the receiver back to the source, essentially
reversing the processing steps performed by the upper blocks.

The block described as ’SHA-512’ performs a slightly more complex operation than
generating the output of the SHA-512 algorithm. This operation is described in detail
for each element in the sections above.

Finally, the dashed block around the blocks of ’Action’ and ’Pass-phrase’ indicates the
user’s privacy: These two inputs are provided by the user for each WebSpa request to
the client and are not transmitted in the clear.

25

Web-Spa Specification Guide v0.7

5 Attack Models

No system is totally secure; WebSpa is no exception to this statement. Still, we have
tried to make it very hard for a determined attacker to compromise a server running
WebSpa.

In this section we list the hypothesis, attack trees and conditions under which WebSpa
can operate in a secure way. We also list a number of valid attacks that can be performed
on a WebSpa server that would render our security controls useless.

After having had endless discussions, re-designed the crypto libraries several times and
lost some of the precious hair left on our foreheads, we believe that WebSpa is now prone
to withstand a number of attack scenarios. Here is the How & Why.

5.1 Hypothesis

We start off by defining what we take for granted. Compromise any of the components
listed in the next paragraph and WebSpa would probably be left dead in the water.

Our hypothesis is that the guest O/S, respective web server and underlying java runtime
have been configured and are running in a secure way. You probably should not be
attempting to set up a covert channel of communication, if the primary channel is not
one that you trust and believe to be secure.

Yes, there will always be the occasional zero-day vulnerability and respective plethora
of exploits, but what this hypothesis is stating is that if you have enabled a telnet port
with default username/password, you probably have bigger problems than safeguarding
the security your WebSpa server.

This hypothesis implies that each of those components are pass-through components of
tainted data; WebSpa should be able to deal with such data flows.

Figure 5: The system architecture of WebSpa

WebSpa does not listen on any port and does not accept direct connections. It is designed
as a log listener whereby it ’tails’ the log file of a web server for new entries in a certain
format. The above should help set the respective one-way-trust relationships between
each of the components mentioned.

26

Web-Spa Specification Guide v0.7

5.2 Attack Trees

An attack tree is defined as a methodical technique of enumerating the what if scenarios
based on varying attacks under a common goal: To breach a system.

Since WebSpa is a complex program, it has a fairly complex tree under the primary goal
of ”execute an O/S Command on a server running WebSpa”. We have build this attack
tree taking into account the 1999 Schneier PGP example attack tree found in [?].

Goal 1: Execute an O/S Command on a server running WebSpa

1. Decrypt the web-knock message itself (OR)

1.1. Break hash commit operation (OR)

1.1.1. Brute-force hash commit operation (OR)

1.1.2. Mathematically break hash commit operation (OR)

1.1.2.1. Break SHA-512 (OR)

1.1.2.2. Break partial SHA-512 substring used (OR)

2. Determine pass-phrase or action used to generate the web-knock via other means
(OR)

2.1. Fool WebSpa user into sending their pass-phrase into the clear (OR)

2.1.1. Convince the WebSpa user to use a fake WebSpa client (OR)

2.2. Monitor the memory of the computer where the WebSpa client is used (OR)

2.3. Monitor the memory of the computer where the WebSpa server is used (OR)

2.4. Implant virus that exposes the pass-phrase and action number (OR)

3. Get the WebSpa administrator to (help) decrypt the message (OR)

3.1. Chosen ciphertext attack on the web-knock (OR)

3.2. Send another user’s pass-phrase and action number (OR)

3.3. Read WebSpa server database

3.3.1. Copy database off the administrator’s hard drive or virtual memory (OR)

3.3.2. Copy database from back locations (OR)

3.3.3. Monitor administator’s network traffic (OR)

3.3.4. Use electromagnetic/wireless snooping techniques to read messages as it
is displayed on the screen (OR)

3.4. Compromise the ’out-of-band’ channel of communication used between the
WebSpa user and administrator

27

Web-Spa Specification Guide v0.7

In failing to execute an O/S command on a server that is running WebSpa, the second
objective would be to make that server unresponsive to all other WebSpa requests, thus
disabling the covert channel of communication.

Goal 2: Make a server running WebSpa unresponsive to all requests

1. Crash the server so that to force access via an insecure channel (OR)

1.1. Send so many requests that the web server becomes unresponsive (OR)

1.2. Send so many WebSpa requests that the WebSpa server becomes unresponsive
(OR)

1.2.1. Create a valid web-knock from an active user’s pass-phrase and action
number that is submitted repeatedly to the WebSpa server (OR)

1.2.2. Create invalid web-knock requests that pass the basic input validation
tests and submit them repeatedly to the WebSpa server (OR)

In the event of not knowing which server to attack, a determined attacker would have
to be able to identify a WebSpa server first.

Goal 3: Identify a server that is running WebSpa

1. Periodically monitor a server for changes in its services (OR)

2. Compromise a server and find the respective WebSpa server executable, database
and configuration files on it

In the sections that follow, we focus on what we believe to be the most successful of
these attacks, in terms of achieving one of the above 3 stated goals. For each of these
attacks, we list the controls, defences and conditions required for each attack to be
successful.

5.3 Timed Brute Force Attacks

Like any single password based authentication system, WebSpa is vulnerable to a brute
force attack. A malicious attacker iterates through a dictionary of potential pass-phrases,
encodes them (using the WebSpa client) as valid web-knocks and attempts to identify if
one of them is a valid user’s pass-phrase.

There are two defences to this attack build in the design of the WebSpa. First, the
malicious attacker would have to know which action number to select for a particular
O/S command and second, the malicious attacker would have to know what that O/S
command actually was.

The former of these two defence is not really a defence; needing to select an action
number in the range of [0 - 9] merely adds another factor to the brute-force attack. The
reason why we consider it as a defence is because unlike a username/password screen

28

Web-Spa Specification Guide v0.7

where once the right combination is submitted, you get granted access, with WebSpa
there are 10 possible potential states that you have to monitor at any one time in order
to see if the combination of pass-phrase and action number is one that is valid.

The latter of these two defences actually implies that in order to successfully execute a
timing brute force attack against a server running WebSpa, you would have to know of
at least one O/S command that when executed would change the state of the server in
such a way that it would be noticeable from an external attacker’s perspective.

Both these two defences can be bypassed in the event of a malicious attacker coming
in contact with or seeing how WebSpa is used on real ’live’ server. They can also be
bypassed if a malicious attacker colludes with the WebSpa administrator.

A timed brute force attack on a covert channel of communication is something that
WebSpa is vulnerable to. This is why it is paramount that strong pass-phrases are
selected and given to each WebSpa user.

5.4 Replay Attacks

A replay attack on a machine running WebSpa in server mode is an attack that allows
for a passive or active eavesdropper to capture, delay and replay web-knocks being sent
from the client to the server.

If we ignore the recommendation of setting up WebSpa to monitor the log file of a web-
server that is configured to work solely over the HTTPS protocol, one additional defence
mechanism has been build into the tool.

As specified in section 4.4 entitled Design Rationale, a token is valid for 60 seconds.
Therefore, even in the event of not using WebSpa over HTTPS, a malicious attacker
intercepting a valid web-knock, will only have 60 seconds to re-use this token, before it
becomes redundant.

29

Web-Spa Specification Guide v0.7

5.5 Man-in-the-middle Attacks

A man-in-the-middle attack on a machine running WebSpa in server mode is an at-
tack that allows for an active eavesdropper to impersonate one of the two endpoints of
communication.

Continuing to ignore the recommendation of setting up WebSpa on HTTPS, there is
one fundamental control preventing the replay attack scenarios discussed previously to
expand into wider man-in-the-middle attacks.

There is a common secret that has been shared in the form of a pass-phrase between
each WebSpa user and the WebSpa administrator.

Thus, in order for this attack to materialise in the form of a WebSpa server receiving a
message that impersonates a user of WebSpa, knowledge of that user’s pass-phrase must
have been made available to the party impersonating them.

Inversely, for a WebSpa user believing that they are communicating with not the real
WebSpa server by instead an imposing end-point, the server would have to know how to
react to a web-knock, by knowing who the user is.

These conditions are not impossible to meet and can occur just by active observation
under very set conditions. Examples would include a user always submitting a web-knock
request from the same IP address and have a single action assigned to them.

As such, some form of collusion or otherwise accomplished compromise must be already
happening for a man-in-the-middle attack to be able to succeed in a remit wider to that
of a replay attack.

30

Web-Spa Specification Guide v0.7

5.6 Availability Attacks

An availability (or resource starvation) attack on a machine running WebSpa in server
mode is an attack that renders the WebSpa executable unresponsive based on one or
more valid or invalid requests being received.

The controls preventing this attack from materialising are:

1. The line of text within the log file cannot be more than 216 − 1 characters

1 // Check i f the l i n e l ength i s more than 65535 chars
2 i f (r eques tL ine . l ength () > Character .MAXVALUE) {
3 re turn ;
4 }

2. There is a 10 second delay between checks of the log file for new content received

1 i f (myLogTailer == nu l l) {
2 myLogTailer = Ta i l e r . c r e a t e (accessLog , myLogListener , 10000 , t rue) ;
3 } e l s e {

In addition to this, WebSpa can only process requests as fast as your web server of choice
can write them to the log file. Thus, there is a definite protocol change between a user
submiting a valid or an invalid WebSpa request being attempted to be processed by
WebSpa.

5.6.1 User Iteration Availability Attack

One avenue of attack that also has to be explored relates to the fact that for a URL
request that appears to be a valid WebSpa request (one that is 100 characters), the pass-
phrase of every user will be fetched from the database. Once that fetching database event
takes place, the hash value for the current minute will be calculated and compared to
web-knock received.

This can lead to an attack caused by the fact that the WebSpa server becomes unre-
sponsive while attempting to calculate every valid hash for that minute in time.

For the two steps required to execute this operation, our analysis (both in the form of
JUnit testing as well as profiling the software) shows that fetching all the user’s pass-
phrases is a simple SELECT operation requiring less than 100 ms to complete.

Similarly, the JUnit tests for the class net.selecus.wsp.crypto.WebSpaEncoder clearly
illustrate that the method (named matches) calculating a hash value requires approxi-
mately 04-10 ms to complete. Such short computational times are expected, given that
no heavy duty crypto operations take place when calculating a web-knock, plain SHA-512
in an iterative way is the most expensive operation that actually takes place.

31

Web-Spa Specification Guide v0.7

The bullets below, list the amount of time (in seconds) it takes to execute a matching
exercise between a pass-phrase and a valid web-knock. These values are extracting from
the respective JUnit tests.

• testMatchesFalse(net.seleucus.wsp.crypto.WebSpaEncoderTest) - (0.010 s)

• testMatchesTrue(net.seleucus.wsp.crypto.WebSpaEncoderTest) - (0.004 s)

• testEncode(net.seleucus.wsp.crypto.WebSpaEncoderTest) - (0.004 s)

Thus, even in the event of a WebSpa server having 100 active users, the operation of
calculating their respective hash values for that particular minute in time is not one that
is likely to take more than 1 second.

Based on these facts we do recommend that no more than 20 WebSpa users are registered
for a single server instance of this tool.

To summarise, we do not believe that a user iteration attack can impact the availability
of this tool, provided no more than the recommended number of users are registered
with the WebSpa server.

Of course, WebSpa might be indirectly affected by Distributed Denial of Service (DDoS)
& Denial of Service (DoS) attacks against the web server, or the underlying operating
system.

5.7 Administrator Collusion Attacks

If the administrator of WebSpa decides to collude against a user of WebSpa with a
malicious attacker, there are no protections in the design or implementation of this
system that can assist the user.

A WebSpa administrator has access to the pass-phrase of each WebSpa user, their re-
spective action numbers, assigned to respective O/S commands and also all the records
of when each user executed each command, if it was successful, etc.

32

Web-Spa Specification Guide v0.7

5.8 Vertical Privillege Escalation Attacks

A vertical privilege escalation attack on a machine running WebSpa in server mode is an
attack that allows a legitimate WebSpa user to become a WebSpa administrator.

Such an attack can be quite common, if the legitimate WebSpa has been granted ac-
count access to the machine running WebSpa in server mode and that account has user
file permissions which are the same or superset those that the WebSpa jar is running
under.

Such an attack can be easily prevented by setting or assigning a user account to run the
WebSpa jar, which does not allow other users to access this file location.

As WebSpa has been designed to create all database and configuration files within the di-
rectory that it is been executed, restricting file access to this location would immediately
remediate against this attack.

33

Web-Spa Specification Guide v0.7

5.9 Cryptanalytic Attacks

As a protocol of communication, WebSpa does allow for a form of known-plaintext at-
tacks to materialise. An attacker intercepting a valid web-knock at a particular moment
in time would have access to the following elements of plain-text information.

• The random byte(s) used

• The current UTC used

This gives an attacker two out of the three elements required, leaving the most important
pass-phrase as the unknown element of the web-knock request. Variants of differential
cryptanalysis techniques can be used, provided enough ciphertext is collected.

We have attempted to make a cryptanalyst’s life a little bit more difficult by hashing
our inputs a number of times. Both, the pass-knock and the user-knock are processed
by the digest() function and doing so hashed with SHA512 for a total of 1024 times.
As an additional security measure, random bytes are added prior to the hash-cycles to
further increase entropy.

This design also prevents attacks based on precomputed tables, known as rainbow ta-
bles. Despite often been used for reversing cryptographic hash functions, rainbow tables
generated for the standard hash function SHA-512 would not be much assistance in the
cryptanalysis of WebSpa.

In other words, we believe that with the current level of technology, the digest() function
can resist chosen plaintext attacks for a usable amount of time.

5.10 Rubber-hose Cryptanalysis

When establishing a covert channel of communication, based on a single ’something
you know’ factor of authentication, that is shared as a common secret between the
administrator and the user, rubber-hose cryptanalysis has to be mentioned as a potential
attack avenue.

Given what WebSpa represents, it might unfortunately be easier to use ”less sophis-
ticated” methods of cryptanalysis such as simply beating the secret out of the key
holder(s), or putting the most common forms of human corruption to good use.

34

Web-Spa Specification Guide v0.7

6 RFC & Other Related Work

In this section, we note a number of building blocks on which the design of WebSpa has
been based upon.

Firstly, for the concept of executing an O/S command via means of a single request,
we reference fwknop [?]. Even though fwknop is a network access control (via iptables)
tool, it implements an authorization scheme called Single Packet Authorization (SPA).
The design of WebSpa is based on the concept of a single HTTP/S request, building on
from the concept of SPA.

Secondly, as described in the design rationale section of the request, at the heart of
WebSpa lies a KiSS cryptographic commitment scheme [?] that is used to generate the
pass-knock and the action-knock. The basis of this hash operation stems from the Spring
StandardPasswordEncoder Class [?]. In WebSpa the two knock sequences are generated
via means of the hash techniques described in the Spring Class.

Thirdly, like RFC 6238, entitled TOTP: Time-Based One-Time Password Algorithm,
there is a time changing element to each WebSpa request. Ergo, The concept of changing
the request hash every 60 seconds stems from the TOTP RFC.

We examine these in greater detail in the sections below.

6.1 Fwknop and the Power of SPA

The idea of WebSpa came from reading the fwknop specification [?]. If a single TCP
packet can be deemed sufficient to enable network level access of sorts, a single URL
request over HTTP/S would surely carry the same potential but with less hassle.

Afterall, more people have access to a web browser and HTTP, in its early version (0.9
& 1.0) was a protocol with a specification of a single request being followed by a single
response.

6.2 Spring StandardPasswordEncoder Class

While designing this version WebSpa and having learned from the mistakes of the pre-
vious version, we really wanted to keep matters simple. For this reason, we looked at
the most standard way of deriving a password hash and what better place to start than
the Java world of Spring Source [?].

Thus the concept of using an iterative hashing operation based on SHA-512 and seeding
it with a random salt got introduced to WebSpa. This, in combination with the time
based nature of requests described in the section below, provided a pillar of defences
against a number of attacks.

35

Web-Spa Specification Guide v0.7

6.3 RFC 6238

Despite not being a direct derivation of an existing RFC, WebSpa shares a number
of common design characteristics mainly with RFC 6238, entitled TOTP: Time-Based
One-Time Password Algorithm.

Like RFC 6238, WebSpa uses both a truncation function, as well as a well established
hash algorithm, namely SHA-512. Unlike RFC 6238, which receives one user input, Web-
Spa takes as input two values: The user’s secret pass-phrase and current action.

As WebSpa operates on UTC time measured in minutes, it could be argued that WebSpa
is an RFC 6238 variant where T0=0 and X=60. One more reason amplifying that
argument is that RFC 6238 allows for TOTP implementations that ’may’ use HMAC-
SHA-512 functions. Having said that WebSpa does not utilise HOTP (RFC 4226) as a
building block.

Finally, unlike RFC 6238, WebSpa uses an iterative hashing operation (running the
SHA-512 algorithm iteratively, 1024 times) and seeds each hash with a random salt.
The salt seeding the web-knock is one (1) byte in length, while the salt seeding the
action-knock is four (4) bytes in length. Both salt values are transmitted with each
WebSpa request.

36

Web-Spa Specification Guide v0.7

7 Conclusions

WebSpa is designed as a log listener and does not accept any direct connections or
implement any additional services. It scans the access log file of a web server for a
specific pattern. This pattern consists of a unique pass-phrase for each user and a
pre-meditated action representing an O/S command. We refer to this pattern as the
web-knock.

A web-knock is a string of 100 Base64 URL-safe encoded characters. The first 68 charac-
ters represent a TOTP representation of the user’s pass-phrase truncated to that length
and changing every 60 seconds, while the last 32 characters represent a TOTP rep-
resentation of the user’s pre-meditated action and pass-phrase also changing every 60
seconds.

As a cryptosystem, WebSpa solely relies on the concept of a hash-commit, having as a
base algorithm SHA-512. Each part of a web-knock is randomly salted and the SHA-512
hashing function is repeatedly applied. In order for this communication to work between
the client and the server, both sides of the communication channel are expected to be
in sync with the current UTC time.

Each 100 Base64 URL-safe encoded characters, is checked in two ways: First, in terms
of authentication i.e. has a valid pass-phrase being received at that moment in time
and second, in terms of authorisation i.e. has the user with the respective pass-phrase
have the corresponding right to execute the particular action. If so, the requested O/S
command is executed and logged on the WebSpa server.

The executable itself is a single lightweight .jar file that is currently less than 4MB in
size and uses only a negligible amount of system resources. During stress testing, even
processing 1000 WebSpa requests at a time - which is very unlikely to happen out in the
wild - did not affect the system performance of a mid-range server.

The creators of WebSpa have spent countless hours discussing various approaches and
design concepts. We believe in having created a secure way to execute critical O/S com-
mands on a remote web server through a covert channel, without the need for exposing
additional open ports or requiring to run more services.

Thank you very much for your interest in WebSpa.

37

Web-Spa Specification Guide v0.7

8 References

38

Web-Spa Specification Guide v0.7

9 Abbreviations

1FA 1 Factor Authentication
AES Advanced Encryption Standard
CLI Command Line Interface
DDoS Distributed Denial of Service
DoS Denial of Service
GUI Graphical User Interface
HTTP/S Hypertext Transfer Protocol / Secure
KiSS Keep It Simple, Stupid
HMAC (Keyed-) Hash Message Authentication Code
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IP Internet Protocol
JAR Java ARchive
JRE Java Runtime Environment
NCSC National Cyber Security Centrum
NSA National Security Agency
O/S Operating System
OTP One-Time Password
OTT One-Time Token
RFC Request for Comment
SHA Secure Hash Algorithm
SPA Single Packet Authorization
TCP Transmission Control Protocol
TOTP Time-Based One-Time Password
UCS Universal Character Set
UML Unified Modeling Language
URL Uniform Resource Locator
UTC Universal Time Coordinated (Unofficial)
UTF-8 UCS Transformation Format

39

	Introduction
	This Guide & Other Supporting Documentation
	What is WebSpa?
	Document Structure

	Use Cases
	Objective
	Actors

	Requirements Analysis
	Customer Expectations
	Project and Enterprise Constraints
	External Constraints
	Operational Scenarios
	Measure of Effectiveness (MoEs)
	System boundaries
	Interfaces
	Utilization environments
	Life cycle
	Functional Requirements
	Performance requirements
	Modes of operation
	Technical performance measures
	Physical characteristics
	Human systems integration

	The Request
	Request Structure
	Element 1: Pass-knock
	Element 2: Action-knock
	Design Rationale
	Data Processing Steps

	Attack Models
	Hypothesis
	Attack Trees
	Timed Brute Force Attacks
	Replay Attacks
	Man-in-the-middle Attacks
	Availability Attacks
	Administrator Collusion Attacks
	Vertical Privillege Escalation Attacks
	Cryptanalytic Attacks
	Rubber-hose Cryptanalysis

	RFC & Other Related Work
	Fwknop and the Power of SPA
	Spring StandardPasswordEncoder Class
	RFC 6238

	Conclusions
	References
	Abbreviations

