Using the GNU Compiler Collection

For ccc version 12.2.0

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

Introduction 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC D
3 GCC Command Optionst vvn it eenn.. 11
4 C Implementation-Defined Behavior 513
5 C++ Implementation-Defined Behavior 523
6 Extensions to the C Language Family 525
7 Extensions to the C++ Language 885
8 GNU Objective-C Featureso, 899
9 Binary Compatibility 915
10 gcov—a Test Coverage Program 919
11 gcov-tool—an Offline Geda Profile Processing Tool 933
12 gcov-dump—an Offline Geda and Geno Profile Dump Tool .. 937
13 1lto-dump—Tool for dumping LTO object files. 939
14 Known Causes of Trouble with GCC.................... 941
15 Reporting Bugs......... i 957
16 How To Get Help with GCC 959
17 Contributing to GCC Development 961
Funding Free Software 963
The GNU Project and GNU/Linux., 965
GNU General Public License. 967
GNU Free Documentation License 979
Contributors to GCC e 987
Option Index. i 1005

Keyword Indexo 1033

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
21 CLangUAGEottt 5
2.2 CH+4 Languageot 6
2.3 Objective-C and Objective-C++ Languages 7
24 GO Language.ot 8
25 D Ianguage. . ..o 8
2.6 References for Other Languages ..., 9
3 GCC Command Options...................... 11
3.1 Option SUMMATY ...ttt 11
3.2 Options Controlling the Kind of Output....................... 33
3.3 Compiling C+4 Programsccoouiiiiiiiiiiien.. 43
3.4 Options Controlling C Dialect.............. ..o, 44
3.5 Options Controlling C++ Dialect 51
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 74
3.7 Options to Control Diagnostic Messages Formatting 78
3.8 Options to Request or Suppress Warnings 89
3.9 Options That Control Static Analysis........................ 145
3.10 Options for Debugging Your Program 153
3.11 Options That Control Optimization......................... 161
3.12 Program Instrumentation Options........................... 234
3.13 Options Controlling the Preprocessor........................ 251
3.14 Passing Options to the Assembler........................... 258
3.15 Options for Linking......... i i 259
3.16 Options for Directory Search................ 264
3.17 Options for Code Generation Conventions................... 267
3.18 GCC Developer Optionsc.cveeiiiiieiiiiieeniinaann. 278
3.19 Machine-Dependent Optionsooiiiiiiiii . 294
3.19.1 AArch64 Optionsovurieii i 294
3.19.1.1 ‘-march’ and ‘-mcpu’ Feature Modifiers............ 300
3.19.2 Adapteva Epiphany Optionsc.ou... 302
3.19.3 AMD GCN Options.oveviiieeiiiiie i, 304
3.19.4 ARC Optionsvviii e 305
3.19.5 ARM Options.oueiirii e 315
3.19.6 AVR Optionscooiiiii i 331

3.19.6.1 EIND and Devices with More Than 128 Ki Bytes of

iii

v

Using the GNU Compiler Collection (GCC)

3.19.6.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special

Function Registers........o i 338
3.19.6.3 AVR Built-in Macros..................oiiii.. 338
3.19.7 Blackfin Options........ ... i 341
3.19.8 COHX Options. .. ouetnt i 344
3.19.9 CRIS OptionS. . cvvove et 344
3.19.10 CRI6 Optionsovuutit i 346
3.19.11 C-SKY Options......cvuiii e 346
3.19.12 Darwin Options., 349
3.19.13 DEC Alpha Optionsoeviiiiiiiiiiiinnn... 352
3.19.14 eBPF Options ..o 357
3.19.15 FR30 Optionsc.vvurieirtii i i 358
3.19.16 FT32 Optionsovvuiiinii i 358
3.19.17 FRV Optionsvvint e 358
3.19.18 GNU/Linux Options.........covveiuiiiiueinennenan.. 362
3.19.19 H8/300 Options.evuniiiiiiiiiiiiiiii e 363
3.19.20 HPPA Options......cooiuuiiiiiiii i 363
3.19.21 TA-64 Optionsovetit i e 366
3.19.22 LM32 Options ..o vvettei i i 370
3.19.23 LoongArch Options...........c.ooiiiiiiiiiine... 370
3.19.24 M32C Options . . .ovvtet i i 373
3.19.25 M32R/D Optionsouviuiniiiiiiiiiiiean.. 373
3.19.26 M680X0 Optionsvuueeeii i iaeen 375
3.19.27 MCore Optionsc.oviiiiiiiiii e 380
3.19.28 MeP Optionscouuviiii i 381
3.19.29 MicroBlaze Options...........cooiiiiiiiiiinnniina., 383
3.19.30 MIPS Optionso.ueiii e 384
3.19.31 MMIX Optionsviiii e 399
3.19.32 MN10300 Optionscouurereeiit i, 400
3.19.33 Moxie OptionS ... o.uvtteeii i 401
3.19.34 MSP430 Options.ovviiriii i 401
3.19.35 NDS32 Optionsvviii e 404
3.19.36 Nios IT Optionsoueeiinii i 405
3.19.37 Nvidia PTX Options. 411
3.19.38 OpenRISC Optionscovuiiiii i 412
3.19.39 PDP-11 Optionsovuttiitei i i eee e 413
3.19.40 picoChip Options........covviiiiiiii .. 414
3.19.41 PowerPC Options. ..., 415
3.19.42 PRU OptionsS . .. vovuiii i e 415
3.19.43 RISC-V Options........coiiii . 416
3.19.44 RL78 Options.......c.ovuiiiiiii i, 419
3.19.45 IBM RS/6000 and PowerPC Options.................. 421
3.19.46 RX Options . ..oveetie e e 436
3.19.47 S/390 and zSeries Optionscooiiiina.. 439
3.19.48 Score Options.viiirt i 443
3.19.49 SH Optionsooiuuiieii e 444
3.19.50 Solaris 2 Optionscouiiiiiiiii i 450
3.19.51 SPARC Optionsouuiiiii i 451

3.19.52 Options for System V... 457

3.19.53 TILE-Gx Options.ooiuuiiiiii i 457
3.19.54 TILEPro Optionsoouuiiiiiiiiiii i, 457
3.19.55 V850 Options. . ..ovuteiei i 458
3.19.56 VAX OptionsS . ..ooeiiii i 460
3.19.57 Visium Optionst 461
3.19.58 VMS Optionsoueeiiit e 461
3.19.59 VxWorks Options. 462
3.19.60 X866 OPtIONS ..ottt 462
3.19.61 x86 Windows Options.............ooooiiiiiiiii ... 490
3.19.62 Xstormyl6 Options.........ccoeiiiiiiiiniiienn... 491
3.19.63 Xtensa Options..........c.coiiiiiiiiiiiii .. 491
3.19.64 zSeries Optionsoouiiiiii i 493
3.20 Specifying Subprocesses and the Switches to Pass to Them .. 493
3.21 Environment Variables Affecting GCC 502
3.22 Using Precompiled Headersoooiiiiian. 505
323 CH+ Modules 507
3.23.1 Module Mapper.........cooiiiiiii 509
3.23.2 Module Preprocessing. ... 511
3.23.3 Compiled Module Interface................. 511

C Implementation-Defined Behavior 513
4.1 Translation 513
4.2 Environment.. ... 513
4.3 Identifiers........ooiiiiii 513
4.4 CRaracterS. ...ttt e 514
4.5 INbegers. ..ottt 515
4.6 Floating Point i 515
4.7 Arrays and Pointers........ i 516
4.8 HiInts ..o 517
4.9 Structures, Unions, Enumerations, and Bit-Fields............. 517
410 Qualifiers. ... 518
411 Declaratorso 519
412 Statementst 519
4.13 Preprocessing Directives ... 519
4.14 Library Functions.........o i 520
4.15 Architecture...........c.oiiiiiin e 520
4.16 Locale-Specific Behavior L. 521

C++4 Implementation-Defined Behavior ... 523

5.1 Conditionally-Supported Behavior............................ 523
5.2 Exception Handling............ ... i i 523

vi Using the GNU Compiler Collection (GCC)

6 Extensions to the C Language Family...... 525
6.1 Statements and Declarations in Expressions.................. 525
6.2 Locally Declared Labels................. oo i, 527
6.3 Labelsas Values........c..oiiiiiiiiiiiii i 528
6.4 Nested Functionsot 529
6.5 Nonlocal GOtos ... e 530
6.6 Constructing Function Calls................... 531
6.7 Referring to a Type with typeof o it 533
6.8 Conditionals with Omitted Operands......................... 534
6.9 128-bit Integerso 535
6.10 Double-Word Integers. 535
6.11 Complex Numbersoouiiiiiiii .. 535
6.12 Additional Floating Typescooiiiiiiiiiiii ... 536
6.13 Half-Precision Floating Point 537
6.14 Decimal Floating Types.........c.ooiiiiiiiiiiiiii i .. 538
6.15 Hex Floats. e 539
6.16 Fixed-Point Types.......ccoiiuiiiiii i 539
6.17 Named Address SPacesvviiiit i 541

6.17.1 AVR Named Address Spacescoovvirieennnnn... 541
6.17.2 M32C Named Address Spaces..........ccovviiieeann.. 543
6.17.3 PRU Named Address Spacesccooveieiinno... 543
6.17.4 RL78 Named Address Spaces...........coovviieinne ... 543
6.17.5 x86 Named Address Spacescooviieninnan... 543
6.18 Arrays of Length Zero ..., 544
6.19 Structures with No Members.............., 545
6.20 Arrays of Variable Length........ 545
6.21 Macros with a Variable Number of Arguments............... 546
6.22 Slightly Looser Rules for Escaped Newlines.................. 547
6.23 Non-Lvalue Arrays May Have Subscripts.................... 547
6.24 Arithmetic on void- and Function-Pointers.................. o047
6.25 Pointer Arguments in Variadic Functions.................... 548
6.26 Pointers to Arrays with Qualifiers Work as Expected 548
6.27 Non-Constant Initializers it 548
6.28 Compound Literals ... 548
6.29 Designated Initializers o L. 549
6.30 Case Ranges.ot 551
6.31 Cast toa Union Type... ..o 551
6.32 Mixed Declarations, Labels and Code 552
6.33 Declaring Attributes of Functions........................... 552
6.33.1 Common Function Attributes.......................... 553
6.33.2 AArch64 Function Attributes 579
6.33.2.1 Inlining rules........... ... i i, 581
6.33.3 AMD GCN Function Attributes........................ 581
6.33.4 ARC Function Attributes.............................. 582
6.33.5 ARM Function Attributes............ 583
6.33.6 AVR Function Attributes 585
6.33.7 Blackfin Function Attributes........................... 587

6.33.8 BPF Function Attributes. ..., 588

6.33.9 CRI16 Function Attributes................., 588
6.33.10 C-SKY Function Attributes........................... 588
6.33.11 Epiphany Function Attributes......................... 588
6.33.12 H8/300 Function Attributes........................... 589
6.33.13 TA-64 Function Attributes........... 590
6.33.14 M32C Function Attributes............................ 590
6.33.15 M32R/D Function Attributes......................... 591
6.33.16 m68k Function Attributes............. ..., 591
6.33.17 MCORE Function Attributescooo. ... 592
6.33.18 MeP Function Attributes 592
6.33.19 MicroBlaze Function Attributes....................... 592
6.33.20 Microsoft Windows Function Attributes............... 593
6.33.21 MIPS Function Attributes 594
6.33.22 MSP430 Function Attributes..................... ..., 596
6.33.23 NDS32 Function Attributes........................... 597
6.33.24 Nios II Function Attributes ia... 598
6.33.25 Nvidia PTX Function Attributes...................... 599
6.33.26 PowerPC Function Attributes......................... 599
6.33.27 RISC-V Function Attributes 602
6.33.28 RL78 Function Attributes............... 602
6.33.29 RX Function Attributes.......... 603
6.33.30 S/390 Function Attributes................c.coiiuin.. 604
6.33.31 SH Function Attributes.............cooiiiiiiiiinn.. 605
6.33.32 Symbian OS Function Attributes...................... 606
6.33.33 V850 Function Attributes............ 606
6.33.34 Visium Function Attributes................. 606
6.33.35 x86 Function Attributes............. ..., 606
6.33.36 Xstormyl6 Function Attributes....................... 618
6.34 Specifying Attributes of Variables........................... 618
6.34.1 Common Variable Attributes........................... 618
6.34.2 ARC Variable Attributes. ... 626
6.34.3 AVR Variable Attributes............ 626
6.34.4 Blackfin Variable Attributes............................ 628
6.34.5 H8/300 Variable Attributes 628
6.34.6 TA-64 Variable Attributes 629
6.34.7 M32R/D Variable Attributes........................... 629
6.34.8 MeP Variable Attributes............... 629
6.34.9 Microsoft Windows Variable Attributes................. 630
6.34.10 MSP430 Variable Attributes 631
6.34.11 Nvidia PTX Variable Attributes 631
6.34.12 PowerPC Variable Attributes 631
6.34.13 RL78 Variable Attributes 631
6.34.14 V850 Variable Attributes i, 632
6.34.15 x86 Variable Attributes.............. 632
6.34.16 Xstormyl6 Variable Attributes........................ 632
6.35 Specifying Attributes of Types ..., 632
6.35.1 Common Type Attributes............... ..., 633
6.35.2 ARC Type Attributes. ..., 640

vii

viii

Using the GNU Compiler Collection (GCC)
6.35.3 ARM Type Attributes ..., 641
6.35.4 BPF Type Attributes ... 641
6.35.5 MeP Type Attributes.............cooiiiiiiiiiiiiL. 641
6.35.6 PowerPC Type Attributes................. 641
6.35.7 x86 Type Attributes i i 641
6.36 Label Attributes....... ... 642
6.37 Enumerator Attributes.......... 643
6.38 Statement Attributes 643
6.39 Attribute Syntax 644
6.40 Prototypes and Old-Style Function Definitions 647
6.41 C+H+ Style Commentsc.ooviiiiiiiiiii .. 648
6.42 Dollar Signs in Identifier Names............. 648
6.43 The Character ESC in Constantsooiia... 648
6.44 Determining the Alignment of Functions, Types or Variables
.. 648
6.45 An Inline Function is As Fast Asa Macro................... 649
6.46 When is a Volatile Object Accessed? 650
6.47 How to Use Inline Assembly Language in C Code 651
6.47.1 Basic Asm — Assembler Instructions Without Operands
... 652
6.47.2 Extended Asm - Assembler Instructions with C Expression
Operands.ot 653
6.47.2.1 Volatile.... 655
6.47.2.2 Assembler Template............... 657
6.47.2.3 Output Operandsccoviiiiiiiieeninn.n. 659
6.47.2.4 Flag Output Operandscooveiieinn... 661
6.47.2.5 Input Operands..............ccoiiiiiiiiiiaaa.. 663
6.47.2.6 Clobbers and Scratch Registers.................... 664
6.47.2.7 Goto Labels........... .o i 667
6.47.2.8 x86 Operand Modifiers....................cooun.. 669
6.47.2.9 x86 Floating-Point asm Operands.................. 671
6.47.2.10 MSP430 Operand Modifiers...................... 672
6.47.3 Constraints for asm Operands 673
6.47.3.1 Simple Constraints.............. ..o, 673
6.47.3.2 Multiple Alternative Constraints 675
6.47.3.3 Constraint Modifier Characters.................... 676
6.47.3.4 Constraints for Particular Machines 677
6.47.4 Controlling Names Used in Assembler Code 704
6.47.5 Variables in Specified Registers......................... 705
6.47.5.1 Defining Global Register Variables................. 705
6.47.5.2 Specifying Registers for Local Variables............ 707
6.47.6 Sizeof an asm........... ..t 708
6.48 Alternate Keywords. ... 708
6.49 Incomplete enum Typeso .. 709
6.50 Function Names as Strings. ..., 709
6.51 Getting the Return or Frame Address of a Function......... 710
6.52 Using Vector Instructions through Built-in Functions........ 711
6.53 Support for offsetof..... ... 715

6.54 Legacy __sync Built-in Functions for Atomic Memory Access
.. 715
6.55 Built-in Functions for Memory Model Aware Atomic Operations
.. 17
6.56 Built-in Functions to Perform Arithmetic with Overflow Checking
.. 721
6.57 x86-Specific Memory Model Extensions for Transactional Memory
.. 724
6.58 Object Size Checking Built-in Functions..................... 724
6.59 Other Built-in Functions Provided by GCC 726
6.60 Built-in Functions Specific to Particular Target Machines.... 743
6.60.1 AArch64 Built-in Functions 743
6.60.2 Alpha Built-in Functions................, 743
6.60.3 Altera Nios IT Built-in Functions....................... 744
6.60.4 ARC Built-in Functions............ ..., 746
6.60.5 ARC SIMD Built-in Functions 748
6.60.6 ARM iWMMX¢t Built-in Functions..................... 752
6.60.7 ARM C Language Extensions (ACLE) 754
6.60.8 ARM Floating Point Status and Control Intrinsics. 755
6.60.9 ARM ARMv8-M Security Extensions................... 755
6.60.10 AVR Built-in Functions......................, 755
6.60.11 Blackfin Built-in Functions............................ 757
6.60.12 BPF Built-in Functions.................., 757
6.60.13 FR-V Built-in Functions 757
6.60.13.1 Argument Types.........ooiuiiiiiiiiniani . 758
6.60.13.2 Directly-Mapped Integer Functions............... 758
6.60.13.3 Directly-Mapped Media Functions................ 759
6.60.13.4 Raw Read/Write Functions 761
6.60.13.5 Other Built-in Functions......................... 761
6.60.14 MIPS DSP Built-in Functions......................... 761
6.60.15 MIPS Paired-Single Support 766
6.60.16 MIPS Loongson Built-in Functions.................... 766
6.60.16.1 Paired-Single Arithmetic......................... 768
6.60.16.2 Paired-Single Built-in Functions.................. 769
6.60.16.3 MIPS-3D Built-in Functions...................... 770
6.60.17 MIPS SIMD Architecture (MSA) Support............. 772
6.60.17.1 MIPS SIMD Architecture Built-in Functions...... 773
6.60.18 Other MIPS Built-in Functions........................ 786
6.60.19 MSP430 Built-in Functions 786
6.60.20 NDS32 Built-in Functions............... 786
6.60.21 picoChip Built-in Functions........................... 787
6.60.22 Basic PowerPC Built-in Functions..................... 787
6.60.22.1 Basic PowerPC Built-in Functions Available on all
Configurations 787
6.60.22.2 Basic PowerPC Built-in Functions Available on ISA
20D 791

2.06. .. 793

ix

Using the GNU Compiler Collection (GCC)

6.60.22.4 Basic PowerPC Built-in Functions Available on ISA

2 0T 793
6.60.22.5 Basic PowerPC Built-in Functions Available on ISA

3. 0 e 793
6.60.22.6 Basic PowerPC Built-in Functions Available on ISA

B 700 796

6.60.23 PowerPC AltiVec/VSX Built-in Functions............. 797

6.60.23.1 PowerPC AltiVec Built-in Functions on ISA 2.05.. 799
6.60.23.2 PowerPC AltiVec Built-in Functions Available on ISA

206 . 808
6.60.23.3 PowerPC AltiVec Built-in Functions Available on ISA
20T 810
6.60.23.4 PowerPC AltiVec Built-in Functions Available on ISA
B0 813
6.60.23.5 PowerPC AltiVec Built-in Functions Available on ISA
0 P 818

6.60.24 PowerPC Hardware Transactional Memory Built-in
Functions ... 828
6.60.24.1 PowerPC HTM Low Level Built-in Functions..... 828
6.60.24.2 PowerPC HTM High Level Inline Functions 830
6.60.25 PowerPC Atomic Memory Operation Functions 832
6.60.26 PowerPC Matrix-Multiply Assist Built-in Functions ... 833
6.60.27 PRU Built-in Functions............................... 834
6.60.28 RISC-V Built-in Functions............................ 835
6.60.29 RX Built-in Functions oL 835
6.60.30 S/390 System z Built-in Functions 836
6.60.31 SH Built-in Functions.......................ooooo. ... 838
6.60.32 SPARC VIS Built-in Functions........................ 839
6.60.33 TI C6X Built-in Functions............................ 842
6.60.34 TILE-Gx Built-in Functions........................... 843
6.60.35 TILEPro Built-in Functions........................... 843
6.60.36 x86 Built-in Functions 844
6.60.37 x86 Transactional Memory Intrinsics.................. 869
6.60.38 x86 Control-Flow Protection Intrinsics 870
6.61 Format Checks Specific to Particular Target Machines....... 871
6.61.1 Solaris Format Checks 871
6.61.2 Darwin Format Checks...................cooo... 871
6.62 Pragmas Accepted by GCC....... 871
6.62.1 AArch64 Pragmas ..., 871
6.62.2 ARM Pragmas...........coiiiiiiiiiiienananns 872
6.62.3 M32C Pragmasoouutitiiii i 872
6.62.4 MeP Pragmas.........ccooiiiiiiiiiiiii i 872
6.62.5 PRU Pragmascoooiiiiiiiiiiiiiii i, 873
6.62.6 RS/6000 and PowerPC Pragmas 873
6.62.7 S/390 Pragmasouuiuiuiiiiii i 873
6.62.8 Darwin Pragmas............ . . i i 874
6.62.9 Solaris Pragmas. ... 874

6.62.10 Symbol-Renaming Pragmas........................... 875

6.62.11 Structure-Layout Pragmas............................ 875
6.62.12 Weak Pragmas..............coiiiiiiiiiiiiiiii 876
6.62.13 Diagnostic Pragmas............. ... o it 876
6.62.14 Visibility Pragmas............. e, 878
6.62.15 Push/Pop Macro Pragmas 878
6.62.16 Function Specific Option Pragmas..................... 879
6.62.17 Loop-Specific Pragmas................ 879
6.63 Unnamed Structure and Union Fields....................... 880
6.64 Thread-Local Storage...........coooiiiiiiiii .. 881
6.64.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage..... 881
6.64.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage. ... 882
6.65 Binary Constants using the ‘Ob’ Prefix 884
Extensions to the C++ Language.......... 885
7.1 When is a Volatile C++ Object Accessed? 885
7.2 Restricting Pointer Aliasing........... 885
7.3 Vague Linkageo 886
7.4 C++ Interface and Implementation Pragmas................. 887
7.5 Where’s the Template?........ .. i, 888
7.6 Extracting the Function Pointer from a Bound Pointer to Member
Functiono 890

7.7 C++-Specific Variable, Function, and Type Attributes 891
7.8 Function Multiversioning............. ... 892
7.9 Type Traits. ... e 893
710 CH4 Concepts . vvvv et 895
7.11 Deprecated Features.......... ..., 896
7.12 Backwards Compatibilityc.ooiiiiiiiii ... 896
GNU Objective-C Features.................. 899
8.1 GNU Objective-C Runtime API.......... 899
8.1.1 Modern GNU Objective-C Runtime APIT................. 899
8.1.2 Traditional GNU Objective-C Runtime API............. 900
8.2 +load: Executing Code before main.......................... 900
8.2.1 What You Can and Cannot Do in +load 901
8.3 Type Encoding 902
8.3.1 Legacy Type Encoding.................ooiiiiiiia.. 904
8.3.2 BencCodeo 904
8.3.3 Method Signatures.......... ...t 905
8.4 Garbage Collection......... ..., 905
8.5 Constant String Objectsc.coiiiiiiiiii i, 906
8.6 compatibility_alias..........ccooiiiiiiiiiiiiiia, 907
8.7 EXCEPIONS. ..o 908
8.8 Synchronization........... 909
8.9 Fast Enumeration............. oo 909
8.9.1 Using Fast Enumeration................... 909
8.9.2 (C99-Like Fast Enumeration Syntax...................... 910
8.9.3 Fast Enumeration Details o 910

8.9.4 Fast Enumeration Protocol.......... 911

xi

xii Using the GNU Compiler Collection (GCC)

8.10 Messaging with the GNU Objective-C Runtime.............. 912
8.10.1 Dynamically Registering Methods...................... 912
8.10.2 Forwarding Hook o i 913

9 Binary Compatibility 915
10 gcov—a Test Coverage Program........... 919

10.1 Introduction to gCov...... ..ot 919

10.2 InvoKing gCov .. .ottt 919

10.3 Using gcov with GCC Optimization......................... 929

10.4 Brief Description of gcov Data Files......................... 931

10.5 Data File Relocation to Support Cross-Profiling............. 931

11 gcov-tool—an Offline Gcda Profile Processing

Tool... 933
11.1 Introduction to gcov—tool............ ..o, 933
11.2 Invoking gcov—tooluiiuiiiiiiiiii i, 933

12 gcov-dump—an Offline Gcda and Gceno Profile

Dump Tool 937
12.1 Introduction to gcov—dump...........cooviiiiiiiiiiiin... 937
12.2 Invoking gcov—qumpcoouiiuiiiiiiiiniinneennenn.. 937

13 1lto-dump—Tool for dumping LTO object files.

... 939
13.1 Introduction to 1to—dump..........cooviiiiiiiiiiinennenn.. 939
13.2 Invoking 1to—dump............ovuiuiiniiiiiiiiiiieneann.. 939

14 Known Causes of Trouble with GCC...... 941
14.1 Actual Bugs We Haven’t Fixed Yet 941
14.2 Interoperationccoouiiiiiiiiiiiiiiieeenaan 941
14.3 Incompatibilities of GCC....... i i, 943
14.4 Fixed Header Files........ ..o i 946
14.5 Standard Libraries........... ..o 946
14.6 Disappointments and Misunderstandings 947
14.7 Common Misunderstandings with GNU C++ 948

14.7.1 Declare and Define Static Members 948
14.7.2 Name Lookup, Templates, and Accessing Members of Base

ClaSSES .+« vttt 949

14.7.3 Temporaries May Vanish Before You Expect............ 950

14.7.4 TImplicit Copy-Assignment for Virtual Bases............ 951

14.8 Certain Changes We Don’t Want to Make................... 952

14.9 Warning Messages and Error Messages...................... 955

15 Reporting Bugs............................. 957
15.1 Have You Found a Bug? i i 957
15.2 How and Where to Report Bugs 957

16 How To Get Help with GCC 959

17 Contributing to GCC Development 961

Funding Free Software........................... 963

The GNU Project and GNU/Linux 965

GNU General Public License 967

GNU Free Documentation License 979
ADDENDUM: How to use this License for your documents........ 986

Contributors to GCC 987

Option Index................ 1005

Keyword Index 1033

xiii

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to the compilers (GCC) version 12.2.0.
The internals of the GNU compilers, including how to port them to new targets and some
information about how to write front ends for new languages, are documented in a separate
manual. See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Fortran, Ada, D, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Mercury,
and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both
its forms, is commonly known as C89, or occasionally as C90, from the dates of ratifi-
cation. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘~std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 44.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/TEC 9899:1999, and
is commonly known as C99. (While in development, drafts of this standard version were
referred to as C9X.) GCC has substantially complete support for this standard version;
see https://gcc.gnu.org/c99status . html for details. To select this standard, use
‘-std=c99’ or ‘-std=1s09899:1999".

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. (While in development, drafts of this standard version were referred to as C1X.)
GCC has substantially complete support for this standard, enabled with ‘-std=c11’ or
‘-5td=15809899:2011’. A version with corrections integrated was prepared in 2017 and pub-
lished in 2018 as ISO/IEC 9899:2018; it is known as C17 and is supported with ‘-std=c17’

or ‘-std=is09899:2017’; the corrections are also applied with ‘-std=c11’, and the only
difference between the options is the value of __STDC_VERSION__.

A further version of the C standard, known as C2X, is under development; experimental
and incomplete support for this is enabled with ‘-std=c2x’.

By default, GCC provides some extensions to the C language that, on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 525.
Some features that are part of the C99 standard are accepted as extensions in C90 mode,
and some features that are part of the C11 standard are accepted as extensions in C90 and
C99 modes. Use of the ‘-std’ options listed above disables these extensions where they

https://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

conflict with the C standard version selected. You may also select an extended version of
the C language explicitly with ‘~std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’
(for C99 with GNU extensions) or ‘-std=gnuil’ (for C11 with GNU extensions).

The default, if no C language dialect options are given, is ‘-std=gnul7’.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library
facilities; a conforming freestanding implementation is only required to provide certain
library facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since
AMD1, also those in <iso646.h>; since C99, also those in <stdbool.h> and <stdint.h>;
and since C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex
types, added in C99, are not required for freestanding implementations.

The standard also defines two environments for programs, a freestanding environment,
required of all implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program startup and ter-
mination are implementation-defined; and a hosted environment, which is not required,
in which all the library facilities are provided and startup is through a function int main
(void) or int main (int, char *[]1). An OS kernel is an example of a program running
in a freestanding environment; a program using the facilities of an operating system is an
example of a program running in a hosted environment.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it acts as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘-ffreestanding’; it then defines __STDC_HOSTED__ to O and does not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 44.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations on all platforms. To
use the facilities of a hosted environment, you need to find them elsewhere (for example, in
the GNU C library). See Section 14.5 [Standard Libraries], page 946.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC emits a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see https://gcc.gnu.org/readings.html

2.2 C++ Language
GCC supports the original ISO C++ standard published in 1998, and the 2011, 2014, 2017
and mostly 2020 revisions.

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These

https://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to
obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is referred
to as C++11; before its publication it was commonly referred to as C++0x. C++11 contains
several changes to the C++ language, all of which have been implemented in GCC. For
details see https://gcc.gnu.org/projects/cxx-status.html#cxxll. To select this
standard in GCC, use the option ‘-std=c++11’.

Another revised ISO C++ standard was published in 2014 as ISO/IEC 14882:2014, and is
referred to as C++14; before its publication it was sometimes referred to as C++1y. C++14
contains several further changes to the C++ language, all of which have been implemented
in GCC. For details see https://gcc.gnu.org/projects/cxx-status.html#cxx14. To
select this standard in GCC, use the option ‘-std=c++14’.

The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was published.
This is referred to as C++17, and before publication was often referred to as C++1z. GCC
supports all the changes in that specification. For further details see https://gcc.gnu.
org/projects/cxx-status.html#cxx17. Use the option ‘-std=c++17’ to select this vari-
ant of C++.

Another revised ISO C++ standard was published in 2020 as ISO/IEC 14882:2020, and
is referred to as C++20; before its publication it was sometimes referred to as C++2a. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx20. To select this standard in GCC, use
the option ‘-std=c++20’.

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

To obtain all the diagnostics required by any of the standard versions described above
you should specify ‘~-pedantic’ or ‘-pedantic-errors’, otherwise GCC will allow some
non-ISO C++ features as extensions. See Section 3.8 [Warning Options], page 89.

By default, GCC also provides some additional extensions to the C++ language that
on rare occasions conflict with the C++ standard. See Section 3.5 [C++ Dialect Options],
page 51. Use of the ‘-std’ options listed above disables these extensions where they they
conflict with the C++ standard version selected. You may also select an extended version
of the C++ language explicitly with ‘-std=gnu++98’ (for C++98 with GNU extensions), or
‘-std=gnu++11’ (for C++11 with GNU extensions), or ‘-std=gnu++14’ (for C++14 with GNU
extensions), or ‘-std=gnu++17’ (for C++17 with GNU extensions), or ‘-std=gnu++20’ (for
C++20 with GNU extensions).

The default, if no C++ language dialect options are given, is ‘~std=gnu++17’.

2.3 Objective-C and Objective-C++ Languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration

https://gcc.gnu.org/projects/cxx-status.html#cxx11
https://gcc.gnu.org/projects/cxx-status.html#cxx14
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx20
http://www.open-std.org/jtc1/sc22/wg21/

8 Using the GNU Compiler Collection (GCC)

(only for Objective-C), method attributes and the @Qoptional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The author-
itative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and
the Objective-C Language”: http://www.gnustep.org/resources/documentation/
ObjectivCBook.pdf is the original NeXTstep document.

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with
the option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled;
they include properties (via the @property, @synthesize and @dynamic keywords),
fast enumeration (not available in Objective-C++), attributes for methods (such as
deprecated, noreturn, sentinel, format), the unused attribute for method arguments,
the @package keyword for instance variables and the @optional and @required keywords
in protocols. You can disable all these Objective-C 2.0 language extensions with the
option ‘~fobjc-std=objcl’, which causes the compiler to recognize the same Objective-C
language syntax recognized by GCC 4.0, and to produce an error if one of the new features
is used.

GCC has currently no support for non-fragile instance variables.
The authoritative manual on Objective-C 2.0 is available from Apple:

e https: / /developer . apple . com / library / archive / documentation / Cocoa /
Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

For more information concerning the history of Objective-C that is available online, see
https://gcc.gnu.org/readings.html

2.4 Go Language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
https://golang.org/doc/gol.

2.5 D language

GCC supports the D 2.0 programming language. The D language itself is currently de-
fined by its reference implementation and supporting language specification, described at
https://dlang.org/spec/spec.html.

http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://gcc.gnu.org/readings.html
https://golang.org/doc/go1
https://dlang.org/spec/spec.html

Chapter 2: Language Standards Supported by GCC 9

2.6 References for Other Languages

See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

Chapter 3: GCC Command Options 11

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler. See Section 3.2 [Options Controlling the Kind of Output], page 33.

Other options are passed on to one or more stages of processing. Some options control
the preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a specific version of GCC. When you
compile C++ programs, you should invoke GCC as g++ instead. See Section 3.3 [Compiling
C++ Programs|, page 43, for information about the differences in behavior between gcc and
g++ when compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘~fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘-ffoo’ is ‘~fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

Some options take one or more arguments typically separated either by a space or by
the equals sign (‘=’) from the option name. Unless documented otherwise, an argument
can be either numeric or a string. Numeric arguments must typically be small unsigned
decimal or hexadecimal integers. Hexadecimal arguments must begin with the ‘0x’ prefix.
Arguments to options that specify a size threshold of some sort may be arbitrarily large
decimal or hexadecimal integers followed by a byte size suffix designating a multiple of bytes
such as kB and KiB for kilobyte and kibibyte, respectively, MB and MiB for megabyte and
mebibyte, GB and GiB for gigabyte and gigibyte, and so on. Such arguments are designated
by byte-size in the following text. Refer to the NIST, IEC, and other relevant national and
international standards for the full listing and explanation of the binary and decimal byte
size prefixes.

See [Option Index], page 1005, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

12 Using the GNU Compiler Collection (GCC)

Owerall Options
See Section 3.2 [Options Controlling the Kind of Output], page 33.
-c -S -E -o file
-dumpbase dumpbase -dumpbase-ext auxdropsuf
-dumpdir dumppfx -x language
-v -### --help[=class[,...]] --target-help --version
-pass-exit-codes -pipe -specs=file -wrapper
@file -ffile-prefix-map=old=new
-fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec|[-slim] -fada-spec-parent=unit -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 44.

-ansi -std=standard -aux-info filename
-fallow-parameterless-variadic-functions -fno-asm
-fno-builtin -fno-builtin-function -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions

-foffload=arg -foffload-options=arg

-fopenacc -fopenacc-dim=geom

-fopenmp -fopenmp-simd
-fpermitted-flt-eval-methods=standard

-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fsso-struct=endianness

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 51.

-fabi-version=n -fno-access-control
-faligned-new=n -fargs-in-order=n -fchar8_t -fcheck-new
-fconstexpr-depth=n -fconstexpr-cache-depth=n
-fconstexpr-loop-limit=n -fconstexpr-ops-limit=n
-fno-elide-constructors

-fno-enforce-eh-specs

-fno-gnu-keywords

-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines

-fmodule-header[=kind] -fmodule-only -fmodules-ts
-fmodule-implicit-inline

-fno-module-lazy

-fmodule-mapper=specification
-fmodule-version-ignore

-fms-extensions

-fnew-inheriting-ctors

-fnew-ttp-matching

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive
-fno-pretty-templates

-fno-rtti -fsized-deallocation
-ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit
-fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvisibility-ms-compat

-fext-numeric-literals
-flang-info-include-translate[=header]
-flang-info-include-translate-not

Chapter 3: GCC Command Options 13

-flang-info-module-cmi[=module]

-stdlib=1ibstdc++,libc++

-Wabi-tag -Wcatch-value -Wcatch-value=n
-Wno-class-conversion -Wclass-memaccess

-Wcomma-subscript -Wconditionally-supported
-Wno-conversion-null -Wctad-maybe-unsupported
-Wctor-dtor-privacy -Wno-delete-incomplete
-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion [}
-Weffc++ -Wno-exceptions -Wextra-semi -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-imported-macros

-Wno-invalid-offsetof -Wno-literal-suffix
-Wmismatched-new-delete -Wmismatched-tags
-Wmultiple-inheritance -Wnamespaces -Wnarrowing

-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor
-Wpessimizing-move -Wno-placement-new -Wplacement-new=n
-Wrange-loop-construct -Wredundant-move -Wredundant-tags
-Wreorder -Wregister

-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods
-Wsuggest-final-types -Wsuggest-override

-Wno-terminate -Wuseless-cast -Wno-vexing-parse
-Wvirtual-inheritance

-Wno-virtual-move-assign -Wvolatile -Wzero-as-null-pointer-constant

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 74.
-fconstant-string-class=class—name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-fobjc-nilcheck
-fobjc-std=objcl
-fno-local-ivars
-fivar-visibility=[public|protected|private|package]
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Diagnostic Message Formatting Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 78.
-fmessage-length=n
-fdiagnostics-plain-output
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always

14 Using the GNU Compiler Collection (GCC)

-fdiagnostics-urls=[auto|never|always]
-fdiagnostics-format=[text|json]

-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe
-fdiagnostics-minimum-margin-width=width
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics—-show-template-tree -fno-elide-type
-fdiagnostics-path-format=[none|separate-events|inline-events]
-fdiagnostics—-show-path-depths

-fno-show-column

-fdiagnostics-column-unit=[display|byte]
-fdiagnostics-column-origin=origin
-fdiagnostics-escape-format=[unicode|bytes]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 89.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Wabi=n

-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size-larger-than=byte-size -Walloc-zero

-Walloca -Walloca-larger-than=byte-size
-Wno-aggressive-loop-optimizations

-Warith-conversion

-Warray-bounds -Warray-bounds=n -Warray-compare
-Wno-attributes -Wattribute-alias=n -Wno-attribute-alias
-Wno-attribute-warning

-Wbidi-chars=[none|unpaired|any|ucn]

-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch

-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-cll-compat
-Wcll-c2x-compat

-Wc++-compat -Wc++ll-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat

-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions

-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts

-Wclobbered -Wcomment

-Wconversion -Wno-coverage-mismatch -Wno-cpp

-Wdangling-else -Wdangling-pointer -Wdangling-pointer=n
-Wdate-time

-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wdisabled-optimization

-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion

-Wduplicated-branches -Wduplicated-cond

-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Werror -Werror=* -Wexpansion-to-defined -Wfatal-errors
-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=n

-Wformat-security -Wformat-signedness -Wformat-truncation=n
-Wformat-y2k -Wframe-address

-Wframe-larger-than=byte-size -Wno-free-nonheap-object
-Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types

Chapter 3: GCC Command Options 15

-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=n
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion

-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model

-Winvalid-pch -Wjump-misses-init -Wlarger-than=byte-size
-Wlogical-not-parentheses -Wlogical-op -Wlong-long
-Wno-lto-type-mismatch -Wmain -Wmaybe-uninitialized
-Wmemset-elt-size -Wmemset-transposed-args
-Wmisleading-indentation -Wmissing-attributes -Wmissing-braces
-Wmissing-field-initializers -Wmissing-format-attribute
-Wmissing-include-dirs -Wmissing-noreturn -Wno-missing-profile
-Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare
-Wnormalized=[none|id|nfc|nfkc]

-Wnull-dereference -Wno-odr

-Wopenacc-parallelism

-Wopenmp-simd

-Wno-overflow -Woverlength-strings -Wno-override-init-side-effects
-Wpacked -Wno-packed-bitfield-compat -Wpacked-not-aligned -Wpadded
-Wparentheses -Wno-pedantic-ms-format

-Wpointer-arith -Wno-pointer-compare -Wno-pointer-to-int-cast
-Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls

-Wrestrict -Wno-return-local-addr -Wreturn-type
-Wno-scalar-storage-order -Wsequence-point

-Wshadow -Wshadow=global -Wshadow=local -Wshadow=compatible-local
-Wno-shadow-ivar

-Wno-shift-count-negative -Wno-shift-count-overflow -Wshift-negative-value |}
-Wno-shift-overflow -Wshift-overflow=n

-Wsign-compare -Wsign-conversion

-Wno-sizeof-array-argument

-Wsizeof-array-div

-Wsizeof-pointer-div -Wsizeof-pointer-memaccess

-Wstack-protector -Wstack-usage=byte-size -Wstrict-aliasing
-Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=n
-Wstring-compare

-Wno-stringop-overflow -Wno-stringop-overread
-Wno-stringop-truncation

-Wsuggest-attribute=[pure|const |noreturn|format|malloc]

-Wswitch -Wno-switch-bool -Wswitch-default -Wswitch-enum
-Wno-switch-outside-range -Wno-switch-unreachable -Wsync-nand
-Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs
-Wtrivial-auto-var-init -Wtsan -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas

-Wunsuffixed-float-constants -Wunused

-Wunused-but-set-parameter -Wunused-but-set-variable
-Wunused-const-variable -Wunused-const-variable=n
-Wunused-function -Wunused-label -Wunused-local-typedefs
-Wunused-macros

-Wunused-parameter -Wno-unused-result

-Wunused-value -Wunused-variable

-Wno-varargs -Wvariadic-macros

-Wvector-operation-performance

-Wvla -Wvla-larger-than=byte-size -Wno-vla-larger-than
-Wvolatile-register-var -Wwrite-strings

-Wzero-length-bounds

Static Analyzer Options
-fanalyzer
-fanalyzer-call-summaries

16 Using the GNU Compiler Collection (GCC)

-fanalyzer-checker=name
-fno-analyzer-feasibility
-fanalyzer-fine-grained
-fno-analyzer-state-merge
-fno-analyzer-state-purge
-fanalyzer-transitivity
-fanalyzer-verbose-edges
-fanalyzer-verbose-state-changes
-fanalyzer-verbosity=level
-fdump-analyzer
-fdump-analyzer-callgraph
-fdump-analyzer-exploded-graph
-fdump-analyzer-exploded-nodes
-fdump-analyzer-exploded-nodes-2
-fdump-analyzer-exploded-nodes-3
-fdump-analyzer-exploded-paths
-fdump-analyzer-feasibility
-fdump-analyzer-json
-fdump-analyzer-state-purge
-fdump-analyzer-stderr
-fdump-analyzer-supergraph
-fdump-analyzer-untracked
-Wno-analyzer-double-fclose
-Wno-analyzer-double-free
-Wno-analyzer-exposure-through-output-file
-Wno-analyzer-file-leak
-Wno-analyzer-free-of-non-heap
-Wno-analyzer-malloc-leak
-Wno-analyzer-mismatching-deallocation
-Wno-analyzer-null-argument
-Wno-analyzer-null-dereference
-Wno-analyzer-possible-null-argument
-Wno-analyzer-possible-null-dereference
-Wno-analyzer-shift-count-negative
-Wno-analyzer-shift-count-overflow
-Wno-analyzer-stale-set jmp-buffer
-Wno-analyzer-tainted-allocation-size
-Wno-analyzer-tainted-array-index
-Wno-analyzer-tainted-divisor
-Wno-analyzer-tainted-offset
-Wno-analyzer-tainted-size
-Wanalyzer-too-complex
-Wno-analyzer-unsafe-call-within-signal-handler
-Wno-analyzer-use-after-free
-Wno-analyzer-use-of-pointer-in-stale-stack-frame
-Wno-analyzer-use-of-uninitialized-value
-Wno-analyzer-write-to-const
-Wno-analyzer-write-to-string-literal

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.10 [Options for Debugging Your Program], page 153.

Chapter 3: GCC Command Options 17

-g -glevel -gdwarf -gdwarf-version

-gbtf -gctf -gctflevel

-ggdb -grecord-gcc-switches -gno-record-gcc-switches

-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf
-gas-loc-support -gno-as-loc-support

-gas—-locview-support -gno-as-locview-support

-gcolumn-info -gno-column-info -gdwarf32 -gdwarf64
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points

-gvms -gxcoff -gxcoff+ -gz[=type

-gsplit-dwarf -gdescribe-dies -gno-describe-dies
-fdebug-prefix-map=old=new -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]
-fno-eliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm

-fvar-tracking -fvar-tracking-assignments

Optimization Options
See Section 3.11 [Options that Control Optimization], page 161.

-faggressive-loop-optimizations

-falign-functions[=n[:m: [n2[:m2]]]]

-falign-jumps[=n[:m: [n2[:m2]11]

-falign-labels[=n[:m: [n2[:m2]]1]]

-falign-loops[=n[:m: [n2[:m2]1]1]1]

-fno-allocation-dce -fallow-store-data-races

-fassociative-math -fauto-profile -fauto-profile[=path]

-fauto-inc-dec -fbranch-probabilities

-fcaller-saves

-fcombine-stack-adjustments -fconserve-stack

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively
-fdevirtualize-at-ltrans -fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-ffinite-loops

-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1m -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-modref -fipa-cp -fipa-cp-clone
-fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const
-fipa-reference -fipa-reference-addressable

-fipa-stack-alignment -fipa-icf -fira-algorithm=algorithm
-flive-patching=level

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots

-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage

18 Using the GNU Compiler Collection (GCC)

-floop-block -floop-interchange -floop-strip-mine
-floop-unroll-and-jam -floop-nest-optimize

-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=alg -fmerge-all-constants

-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmove-loop-stores -fno-branch-count-reg
-fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock
-fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction

-fprofile-use -fprofile-use=path -fprofile-partial-training
-fprofile-values -fprofile-reorder-functions

-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=algorithm

-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsave-optimization-record

-fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion

-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans

-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fsplit-paths

-fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing -fipa-strict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch

-ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge

-ftree-ter -ftree-vectorize -ftree-vrp -ftrivial-auto-var-init
-funconstrained-commons -funit-at-a-time -funroll-all-loops
-funroll-loops -funsafe-math-optimizations -funswitch-loops

-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs
--param name=value -0 -00 -01 -02 -03 -0Os -Ofast -0g -0z

Program Instrumentation Options
See Section 3.12 [Program Instrumentation Options|, page 234.

Chapter 3: GCC Command Options

-p -pg -fprofile-arcs --coverage -ftest-coverage
-fprofile-abs-path

-fprofile-dir=path -fprofile-generate -fprofile-generate=path
-fprofile-info-section -fprofile-info-section=name
-fprofile-note=path -fprofile-prefix-path=path
-fprofile-update=method -fprofile-filter-files=regex
-fprofile-exclude-files=regex
-fprofile-reproducible=[multithreaded|parallel-runs|serial]
-fsanitize=style -fsanitize-recover -fsanitize-recover=style
-fasan-shadow-offset=number -fsanitize-sections=s1,s2,...
-fsanitize-undefined-trap-on-error -fbounds-check
-fcf-protection=[full|branch|return|none|check
-fharden-compares -fharden-conditional-branches
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack
-fvtable-verify=[std|preinit|none]

-fvtv-counts -fvtv-debug

-finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym,...
—-finstrument-functions-exclude-file-list=file,file,...

-fprofile-prefix-map=old=new

Preprocessor Options
See Section 3.13 [Options Controlling the Preprocessor], page 251.

-Aquestion=answer

-A-question[=answer]

-C -CC -Dmacro[=defn]

-dD -dI -dM -dN -dU

-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=charset -fextended-identifiers
-finput-charset=charset -flarge-source-files
-fmacro-prefix-map=old=new -fmax-include-depth=depth
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=width -ftrack-macro-expansion
-fwide-exec-charset=charset -fworking-directory

-H -imacros file -include file

-M -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules
-no-integrated-cpp -P -pthread -remap

-traditional -traditional-cpp -trigraphs

-Umacro -undef

-Wp,option -Xpreprocessor option

Assembler Options
See Section 3.14 [Passing Options to the Assembler|, page 258.

-Wa,option -Xassembler option

Linker Options

See Section 3.15 [Options for Linking], page 259.
object-file-name -fuse-ld=linker -llibrary
-nostartfiles -nodefaultlibs -nolibc -nostdlib
-e entry --entry=entry
-pie -pthread -r -rdynamic
-s -static -static-pie -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan

19

20 Using the GNU Compiler Collection (GCC)

-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol -z keyword

Directory Options
See Section 3.16 [Options for Directory Search], page 264.
-Bprefix -Idir -I-
-idirafter dir
-imacros file -imultilib dir
-iplugindir=dir -iprefix file
-iquote dir -isysroot dir -isystem dir
-iwithprefix dir -iwithprefixbefore dir
-Ldir -no-canonical-prefixes --no-sysroot-suffix
-nostdinc -nostdinc++ --sysroot=dir

Code Generation Options
See Section 3.17 [Options for Code Generation Conventions|, page 267.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -fcommon -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
-fno-jump-tables -fno-bit-tests
-frecord-gcc-switches

-freg-struct-return -fshort-enums -fshort-wchar
-fverbose-asm -fpack-struct [=n]

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrampolines -ftrapv -fwrapv
-fvisibility=[default|internal|hidden|protected]
-fstrict-volatile-bitfields -fsync-libcalls

Developer Options
See Section 3.18 [GCC Developer Options], page 278.

-dletters —-dumpspecs —-dumpmachine -dumpversion
-dumpfullversion -fcallgraph-info[=su,da] -fchecking -fchecking=n -fdbg-cnt-Jj
list

-fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass—-name=range-1list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-list

-fdump-debug -fdump-earlydebug

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-final-insns[=file]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all

-fdump-lang-switch

-fdump-lang-switch-options
-fdump-lang-switch-options=filename

-fdump-passes

-fdump-rtl-pass -fdump-rtl-pass=filename
-fdump-statistics

-fdump-tree-all

-fdump-tree-switch

Chapter 3: GCC Command Options 21

-fdump-tree-switch-options

-fdump-tree-switch-options=filename

-fcompare-debug[=opts| -fcompare-debug-second

-fenable-kind-pass

-fenable-kind-pass=range-list

-fira-verbose=n

-flto-report -flto-report-wpa -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-options[=file]

-fprofile-report

-frandom-seed=string -fsched-verbose=n

-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Machine-Dependent Options
See Section 3.19 [Machine-Dependent Options], page 294.

AArch64 Options
-mabi=name -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align -mno-strict-align
-momit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-mtls-size=size
-mfix-cortex-ab3-835769 -mfix-cortex-a53-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mpc-relative-literal-loads
-msign-return-address=scope
-mbranch-protection=nonel| standard|pac-ret[+leaf +b-key]|bti
-mharden-sls=opts
-march=name -mcpu=name -mtune=name
-moverride=string -mverbose-cost-dump
-mstack-protector-guard=guard -mstack-protector-guard-reg=sysreg
-mstack-protector-guard-offset=offset -mtrack-speculation
-moutline-atomics

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

AMD GCN Options

-march=gpu -mtune=gpu -mstack-size=bytes

ARC Options

-mbarrel-shifter -mjli-always

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
-mea -mno-mpy -mmul32x16 -mmul64 -matomic

Using the GNU Compiler Collection (GCC)

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
-mrgf-banked-regs -mlpc-width=width -G num

-mvolatile-cache -mtp-regno=regno

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact -mlra-priority-noncompact -mmillicode
-mmixed-code -mg-class -mRcq -mRcw -msize-level=level

-mtune=cpu -mmultcost=num -mcode-density-frame
-munalign-prob-threshold=probability -mmpy-option=multo

-mdiv-rem -mcode-density -mll64 -mfpu=fpu -mrfl6 -mbranch-index

ARM Options

-mapcs-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check
-mapcs-reentrant -mno-apcs-reentrant
-mgeneral-regs-only

-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian

-mbe8 -mbe32

-mfloat-abi=name

-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mtune=name -mprint-tune-info
-mstructure-size-boundary=n
-mabort-on-noreturn

-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mpoke-function-name

-mthumb -marm -mflip-thumb

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations

-mfix-cortex-m3-1ldrd
-mfix-cortex-ab7-aes-1742098
-mfix-cortex-a72-aes-1655431
-munaligned-access

-mneon-for-64bits

-mslow-flash-data

-masm-syntax-unified

-mrestrict-it

-mverbose-cost-dump

-mpure-code

-mcmse

-mfix-cmse-cve-2021-35465
-mstack-protector-guard=guard -mstack-protector-guard-offset=offset
-mfdpic

AVR Options

-mmcu=mcu -mabsdata -maccumulate-args
-mbranch-cost=cost
-mcall-prologues -mgas-isr-prologues -mint8

Chapter 3: GCC Command Options 23

-mdouble=bits -mlong-double=bits

-mn_flash=size -mno-interrupts

-mmain-is-0S_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mfract-convert-truncate

-mshort-calls -nodevicelib -nodevicespecs
-Waddr-space-convert -Wmisspelled-isr

Blackfin Options
-mcpu=cpu[-sirevision|
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu -mmax-stack-frame=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue
-melf -maout -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6ec
-msim -mint32 -mbit-ops -mdata-model=model

C-SKY Options
-march=arch -mcpu=cpu
-mbig-endian -EB -mlittle-endian -EL
-mhard-float -msoft-float -mfpu=fpu -mdouble-float -mfdivdu
-mfloat-abi=name
-melrw -mistack -mmp -mcp -mcache -msecurity -mtrust
-mdsp -medsp -mvdsp
-mdiv -msmart -mhigh-registers -manchor
-mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt
-mbranch-cost=n -mcse-cc -msched-prolog -msim

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit

24

Using the GNU Compiler Collection (GCC)

-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

eBPF Options
-mbig-endian -mlittle-endian -mkernel=version -mframe-limit=bytes -mxbpf -
mco-re -mno-co-re -mjmpext -mjmp32 -malu32 -mcpu=version

FR30 Options

-msmall-model -mno-lsim

FT32 Options

-msim -mlra -mnodiv -mft32b -mcompress -mnopm

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linuz Options
-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-1d

H8/300 Options

-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options

Chapter 3: GCC Command Options 25

IA-64

LM52

-march=architecture-type

-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns
Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

LoongArch Options

-march=cpu-type -mtune=cpu-type -mabi=base-abi-type
-mfpu=fpu-type -msoft-float -msingle-float -mdouble-float
-mbranch-cost=n -mcheck-zero-division -mno-check-zero-division
-mcond-move-int -mno-cond-move-int

-mcond-move-float -mno-cond-move-float

-memcpy -mno-memcpy -mstrict-align -mno-strict-align
-mmax-inline-memcpy-size=n

-mcmodel=code-model

MS32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type
-mno-flush-func -mflush-func=name

26 Using the GNU Compiler Collection (GCC)

-mno-flush-trap -mflush-trap=number
-G num

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-march=arch -mcpu=cpu -mtune=tune

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -mb5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot -mlong-jump-table-offsets

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options
-mabsdiff -mall-opts -maverage -mbased=n -mbitops
-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model
-mpic-data-is-text-relative

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5
-mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
-mips16 -mno-mips16 -mflip-mipsi6

-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mipsi16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot

-mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float

-modd-spreg -mno-odd-spreg

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mxpa -mno-xpa

-mCrc -mno-crc

-mginv -mno-ginv

-mmicromips -mno-micromips

Chapter 3: GCC Command Options

-mmsa -mno-msa

-mloongson-mmi -mno-loongson-mmi

-mloongson-ext -mno-loongson-ext

-mloongson-ext2 -mno-loongson-ext2

-mfpu=£fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mload-store-pairs -mno-load-store-pairs
-munaligned-access -mno-unaligned-access

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r5900 -mno-fix-r5900

-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mcompact-branches=policy

-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mlxcl-sxcl -mno-lxcl-sxcl -mmadd4 -mno-madd4
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt -mno-frame-header-opt

MMIX Options

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options

-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do0

-mno-crt0 -mrelax -mliw -msetlb

Mozxie Options

-meb -mel -mmul.x -mno-crt0

MSP430 Options

-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mwarn-mcu

-mcode-region= -mdata-region=

-msilicon-errata= -msilicon-errata-warn=

-mhwmult= -minrt -mtiny-printf -mmax-inline-shift=

27

Using the GNU Compiler Collection (GCC)

NDS82 Options
-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
—mCmovV -mno-cmov
-mext-perf -mno-ext-perf
-mext-perf2 -mno-ext-perf2
-mext-string -mno-ext-string
-mv3push -mno-v3push
-m16bit -mno-16bit
-misr-vector-size=num
-mcache-block-size=num
-march=arch
-mcmodel=code-model
-mctor-dtor -mrelax

Nios II Options
-G num -mgpopt=option -mgpopt -mno-gpopt
-mgprel-sec=regexp -mrOrel-sec=regexp
-mel -meb
-mno-bypass-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-insn=N -mno-custom-insn
-mcustom-fpu-cfg=name
-mhal -msmallc -msys-crtO=name -msys-lib=name
-march=arch -mbmx -mno-bmx -mcdx -mno-cdx

Nvidia PTX Options

-m64 -mmainkernel -moptimize

OpenRISC Options

-mboard=name -mnewlib -mhard-mul -mhard-div

-msoft-mul -msoft-div

-msoft-float -mhard-float -mdouble-float -munordered-float
-mcmov -mror -mrori -msext -msfimm -mshftimm
-mcmodel=code-model

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10

-mint32 -mno-int16 -mint16 -mno-int32

-msplit -munix-asm -mdec-asm -mgnu-asm -mlra
picoChip Options

-mae=ae_type -mvliw-lookahead=N

-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
PRU Options

-mmcu=mcu -minrt -mno-relax -mloop
-mabi=variant

RISC-V Options

-mbranch-cost=N-instruction
-mplt -mno-plt
-mabi=ABI-string

-mfdiv -mno-fdiv

-mdiv -mno-div

Chapter 3: GCC Command Options

-misa-spec=ISA-spec-string
-march=ISA-string
-mtune=processor-string
-mpreferred-stack-boundary=num
-msmall-data-limit=N-bytes
-msave-restore -mno-save-restore
-mshorten-memrefs -mno-shorten-memrefs
-mstrict-align -mno-strict-align
-mcmodel=medlow -mcmodel=medany
-mexplicit-relocs -mno-explicit-relocs
-mrelax -mno-relax

-mriscv-attribute -mmo-riscv-attribute
-malign-data=type

-mbig-endian -mlittle-endian
-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset

RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=gl4 -mallregs
-mcpu=gl0 -mcpu=gl3 -mcpu=gl4 -mgl0 -mgl3 -mgl4d
-m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpowerpc64

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-mupdate -mno-update

-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-aixdesc -mcall-eabi -mcall-freebsd

-mcall-linux -mcall-netbsd -mcall-openbsd

-mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi
-mtraceback=traceback_type

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-mlongcall -mno-longcall -mpltseq -mno-pltseq
-mblock-move-inline-limit=num
-mblock-compare-inline-limit=num
-mblock-compare-inline-loop-limit=num
-mno-block-ops-unaligned-vsx
-mstring-compare-inline-limit=num

29

30

Using the GNU Compiler Collection (GCC)

-misel -mno-isel

-mvrsave -—mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mreadonly-in-sdata -mvxworks -G num

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz

-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
-mcrypto -mno-crypto -mhtm -mno-htm

-mquad-memory -mno-quad-memory

-mquad-memory-atomic -mno-quad-memory-atomic

-mcompat-align-parm -mno-compat-align-parm

-mfloat128 -mno-float128 -mfloatl128-hardware -mno-float128-hardware
-mgnu-attribute -mno-gnu-attribute

-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset -mprefixed -mno-prefixed
-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect
-mprivileged -mno-privileged

RX Options

S/390

-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=

-mbig-endian-data -mlittle-endian-data
-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-mallow-string-insns -mno-allow-string-insns
-mjsr

-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts

and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mhtm -mvx -mzvector

-mtpf-trace -mno-tpf-trace -mtpf-trace-skip -mno-tpf-trace-skip
-mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch=halfwords,halfwords

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

Chapter 3: GCC Command Options

SH Options
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -mé4-single-only -mé4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -mdal
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-maccumulate-outgoing-args
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mcbranch-force-delay-slot
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options

-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -—mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-mstd-struct-return -mno-std-struct-return
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mvis4 -mno-vis4 -mvis4b -mno-vis4b
-mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
-mpopc -mno-popc —msubxc -mno-subxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc
-mlra -mno-lra

System V Options
-Qy -Qn -YP,paths -Ym,dir
TILE-Gx Options

-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
-mcmodel=code-model

TILEPro Options
-mcpu=cpu -m32
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es

31

Using the GNU Compiler Collection (GCC)

-mv850e -mv850 -mv850e3vh
-mloop

-mrelax

-mlong-jumps

-msoft-float

-mhard-float

-mgcc-abi

-mrh850-abi

-mbig-switch

VAX Options
-mg -mgnu -munix -mlra
Visium Options

-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
-mcpu=cpu-type -mtune=cpu-type -msv-mode -muser-mode

VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size

VxWorks Options

-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

286 Options
-mtune=cpu-type -march=cpu-type
-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32 -mmwait
-mrecip -mrecip=opt
-mvzeroupper -mprefer-avx128 -mprefer-vector-width=opt
-mmove-max=bits -mstore-max=bits
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl
-mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma -mpconfig -mwbnoinvd
-mptwrite -mprefetchwtl -mclflushopt -mclwb -mxsavec -mxsaves
-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp
-mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg
-mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -

mengcmd

-mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
-mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid
-mrdseed -msgx -mavxb512vp2intersect -mserialize -mtsxldtrk
-mamx-tile -mamx-int8 -mamx-bf16 -muintr -mhreset -mavxvnni
-mavx512fp16
-mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mkl -mwidekl
-mmemcpy-strategy=strategy -mmemset-strategy=strategy
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

Chapter 3: GCC Command Options 33

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=num
-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-minstrument-return=type -mfentry-name=name -mfentry-section=name
-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=type -mstack-protector-guard=guard
-mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset
-mstack-protector-guard-symbol=symbol

-mgeneral-regs-only -mcall-ms2sysv-xlogues -mrelax-cmpxchg-loop
-mindirect-branch=choice -mfunction-return=choice
-mindirect-branch-register -mharden-sls=choice
-mindirect-branch-cs-prefix -mneeded -mno-direct-extern-access

86 Windows Options
-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable
Xstormyl6 Options
-msim
Xtensa Options

-mconst1l6 -mno-constl16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mauto-litpools -mno-auto-litpools

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

-mabi=abi-type

zSeries Options See S/390 and zSeries Options.

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code that must be preprocessed.
file.i C source code that should not be preprocessed.
file.ii C++ source code that should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code that should not be preprocessed.

34

file.
file.

file.

file.

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.

file.
file.
file.
file.
file.
file.
file.
file.

file.
file.
file.

file.
file.

file

file.
file.
file.
file.

mii

cc
cp
cXX

cpp
CPP
c++

mii
hh

hp
hxx

hpp
HPP
h++

tcc

for
ftn

FOR

.fpp
file.

file.

FPP
FTN

£90
£95
£03
08

Using the GNU Compiler Collection (GCC)

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘~fdump-ada-spec’ switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Chapter 3: GCC Command Options 35

file.F90

file.F95

file.F03

file.F08 Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

file.go Go source code.

file.d D source code.

file.di D interface file.

file.dd D documentation code (Ddoc).

file.ads Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-system-header c++-user-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
d
£77 £77-cpp-input £95 f£95-cpp-input
go
-X none Turn off any specification of a language, so that subsequent files are handled

according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘~c’, ‘-8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

36

-o file

Using the GNU Compiler Collection (GCC)

Compile or assemble the source files, but do not link. The linking stage simply

is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

‘.’ fai fLe), ete., with ‘Lo’

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the

P4)

suffix .c¢’, “.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place the primary output in file file. This applies to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Though ‘-0’ names only the primary output, it also affects the naming of aux-
iliary and dump outputs. See the examples below. Unless overridden, both
auxiliary outputs and dump outputs are placed in the same directory as the
primary output. In auxiliary outputs, the suffix of the input file is replaced
with that of the auxiliary output file type; in dump outputs, the suffix of the
dump file is appended to the input file suffix. In compilation commands, the
base name of both auxiliary and dump outputs is that of the primary output;
in compile and link commands, the primary output name, minus the executable
suffix, is combined with the input file name. If both share the same base name,
disregarding the suffix, the result of the combination is that base name, other-
wise, they are concatenated, separated by a dash.

gcc -c foo.c ...

will use ‘foo.o’ as the primary output, and place aux outputs and dumps
next to it, e.g.,, aux file ‘foo.dwo’ for ‘-gsplit-dwarf’, and dump file
‘foo.c.???r.final’ for ‘~-fdump-rtl-final’.

If a non-linker output file is explicitly specified, aux and dump files by default
take the same base name:

gcc -c foo.c -o dir/foobar.o ...
will name aux outputs ‘dir/foobar.*’ and dump outputs ‘dir/foobar.c.x*’.

A linker output will instead prefix aux and dump outputs:

gcc foo.c bar.c -o dir/foobar ...

Chapter 3: GCC Command Options 37

will generally name aux outputs ‘dir/foobar-foo.*" and ‘dir/foobar-bar.*’,
and dump outputs ‘dir/foobar-foo.c.*” and ‘dir/foobar-bar.c.*’.

The one exception to the above is when the executable shares the base name
with the single input:

gcec foo.c -o dir/foo ...
in which case aux outputs are named ‘dir/foo.*’ and dump outputs named
‘dir/foo.c.*’.
The location and the names of auxiliary and dump outputs can be adjusted
by the options ‘-~dumpbase’, ‘~dumpbase-ext’, ‘~dumpdir’, ‘-save-temps=cwd’,
and ‘-save-temps=obj’.

—dumpbase dumpbase
This option sets the base name for auxiliary and dump output files. It does
not affect the name of the primary output file. Intermediate outputs, when
preserved, are not regarded as primary outputs, but as auxiliary outputs:
gcc -save-temps -S foo.c

saves the (no longer) temporary preprocessed file in ‘foo.i’, and then compiles
to the (implied) output file ‘foo.s’, whereas:

gcc -save-temps -dumpbase save-foo -c foo.c
preprocesses to in ‘save-foo.i’, compiles to ‘save-foo.s’ (now an interme-
diate, thus auxiliary output), and then assembles to the (implied) output file
‘foo.o’.

Absent this option, dump and aux files take their names from the input file,
or from the (non-linker) output file, if one is explicitly specified: dump output
files (e.g. those requested by ‘~fdump-*’ options) with the input name suffix,
and aux output files (those requested by other non-dump options, e.g. -save-
temps, —~gsplit-dwarf, -fcallgraph-info) without it.
Similar suffix differentiation of dump and aux outputs can be attained for
explicitly-given ‘~dumpbase basename.suf’ by also specifying ‘~dumpbase-ext
.suf’.
If dumpbase is explicitly specified with any directory component, any dumppfx
specification (e.g. ‘-dumpdir’ or ‘-save-temps=+’) is ignored, and instead of
appending to it, dumpbase fully overrides it:

gcc foo.c -¢ -o dir/foo.o -dumpbase alt/foo \

—dumpdir pfx- -save-temps=cwd ...

creates auxiliary and dump outputs named ‘alt/foo.*’, disregarding ‘dir/’ in
‘-0’ the *./’ prefix implied by ‘-save-temps=cwd’, and ‘pfx-’ in ‘~dumpdir’.
When ‘-dumpbase’ is specified in a command that compiles multiple inputs,
or that compiles and then links, it may be combined with dumppfx, as spec-
ified under ‘-dumpdir’. Then, each input file is compiled using the combined
dumppfx, and default values for dumpbase and auxdropsuf are computed for
each input file:

gcc foo.c bar.c -c -dumpbase main ...
creates ‘foo.o’” and ‘bar.o’ as primary outputs, and avoids overwriting the aux-
iliary and dump outputs by using the dumpbase as a prefix, creating auxiliary
and dump outputs named ‘main-foo.*’ and ‘main-bar.x*’.

38

Using the GNU Compiler Collection (GCC)

An empty string specified as dumpbase avoids the influence of the output base-
name in the naming of auxiliary and dump outputs during compilation, com-
puting default values :

gcc -c foo.c -o dir/foobar.o -dumpbase ’’ ...

will name aux outputs ‘dir/foo.*’ and dump outputs ‘dir/foo.c.*’. Note
how their basenames are taken from the input name, but the directory still
defaults to that of the output.

The empty-string dumpbase does not prevent the use of the output basename
for outputs during linking;:

gcc foo.c bar.c -o dir/foobar -dumpbase ’’ -flto ...
The compilation of the source files will name auxiliary outputs ‘dir/foo.*’
and ‘dir/bar.*’, and dump outputs ‘dir/foo.c.*” and ‘dir/bar.c.*’. LTO
recompilation during linking will use ‘dir/foobar.’ as the prefix for dumps
and auxiliary files.

—dumpbase-ext auxdropsuf

When forming the name of an auxiliary (but not a dump) output file, drop trail-
ing auxdropsuf from dumpbase before appending any suffixes. If not specified,
this option defaults to the suffix of a default dumpbase, i.e., the suffix of the
input file when ‘~dumpbase’ is not present in the command line, or dumpbase
is combined with dumppfx.

gcc foo.c —c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...
creates ‘dir/foo.o’ as the main output, and generates auxiliary outputs in
‘dir/x-foo.*’, taking the location of the primary output, and dropping the ‘. c’
suffix from the dumpbase. Dump outputs retain the suffix: ‘dir/x-foo.c.*’.
This option is disregarded if it does not match the suffix of a specified dumpbase,
except as an alternative to the executable suffix when appending the linker
output base name to dumppfx, as specified below:

gcc foo.c bar.c -o main.out -dumpbase-ext .out ...
creates ‘main.out’ as the primary output, and avoids overwriting the auxiliary
and dump outputs by using the executable name minus auxdropsuf as a prefix,
creating auxiliary outputs named ‘main-foo.*’ and ‘main-bar.*’ and dump
outputs named ‘main-foo.c.*’ and ‘main-bar.c.*’.

—dumpdir dumppfx

When forming the name of an auxiliary or dump output file, use dumppfx as a
prefix:

gcc —dumpdir pfx- -c foo.c ...
creates ‘foo.o’ as the primary output, and auxiliary outputs named
‘pfx-foo.*’, combining the given dumppfx with the default dumpbase derived
from the default primary output, derived in turn from the input name. Dump
outputs also take the input name suffix: ‘pfx-foo.c.*’.
If dumppfx is to be used as a directory name, it must end with a directory
separator:

gcc —dumpdir dir/ -c foo.c -o obj/bar.o ...
creates ‘obj/bar.o’ as the primary output, and auxiliary outputs named
‘dir/bar.*’, combining the given dumppfx with the default dumpbase derived

Chapter 3: GCC Command Options 39

from the primary output name. Dump outputs also take the input name
suffix: ‘dir/bar.c.x*’.

It defaults to the location of the output file, unless the output file is a special file
like /dev/null. Options ‘-save-temps=cwd’ and ‘-save-temps=obj’ override
this default, just like an explicit ‘~dumpdir’ option. In case multiple such
options are given, the last one prevails:

gcc —dumpdir pfx- -c foo.c -save-temps=obj ...

outputs ‘foo.o’, with auxiliary outputs named ‘foo.*’ because
‘-save-temps=+*" overrides the dumppfx given by the earlier ‘-dumpdir’
option. It does not matter that ‘=obj’ is the default for ‘-save-temps’, nor
that the output directory is implicitly the current directory. Dump outputs
are named ‘foo.c.*’.

When compiling from multiple input files, if ‘~dumpbase’ is specified, dumpbase,
minus a auxdropsuf suffix, and a dash are appended to (or override, if contain-
ing any directory components) an explicit or defaulted dumppfx, so that each
of the multiple compilations gets differently-named aux and dump outputs.

gcc foo.c bar.c -¢ -dumpdir dir/pfx- -dumpbase main ...

outputs auxiliary dumps to ‘dir/pfx-main-foo.*’ and ‘dir/pfx-main-bar.*’,
appending dumpbase- to dumppfx. Dump outputs retain the input file suffix:
‘dir/pfx-main-foo.c.*’ and ‘dir/pfx-main-bar.c.*’, respectively. Contrast
with the single-input compilation:

gcc foo.c -c —dumpdir dir/pfx- -dumpbase main ...

that, applying ‘-dumpbase’ to a single source, does not compute and append
a separate dumpbase per input file. Its auxiliary and dump outputs go in
‘dir/pfx-main.*’.

When compiling and then linking from multiple input files, a defaulted or ex-
plicitly specified dumppfx also undergoes the dumpbase- transformation above
(e.g. the compilation of ‘foo.c’ and ‘bar.c’ above, but without ‘-¢’). If nei-
ther ‘~dumpdir’ nor ‘-~dumpbase’ are given, the linker output base name, minus
auxdropsuf, if specified, or the executable suffix otherwise, plus a dash is ap-
pended to the default dumppfx instead. Note, however, that unlike earlier cases
of linking;:

gcc foo.c bar.c -dumpdir dir/pfx- -o main ...

does not append the output name ‘main’ to dumppfx, because ‘~dumpdir’ is ex-
plicitly specified. The goal is that the explicitly-specified dumppfx may contain
the specified output name as part of the prefix, if desired; only an explicitly-
specified ‘-dumpbase’ would be combined with it, in order to avoid simply
discarding a meaningful option.

When compiling and then linking from a single input file, the linker output
base name will only be appended to the default dumppfx as above if it does
not share the base name with the single input file name. This has been covered
in single-input linking cases above, but not with an explicit ‘~dumpdir’ that
inhibits the combination, even if overridden by ‘-save-temps=x*":

gcc foo.c —dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...

40

—H###

--help

Using the GNU Compiler Collection (GCC)

Auxiliary outputs are named ‘foo.*’, and dump outputs ‘foo.c.*’, in the
current working directory as ultimately requested by ‘-save-temps=cwd’.

Summing it all up for an intuitive though slightly imprecise data flow:
the primary output name is broken into a directory part and a basename
part; dumppfx is set to the former, unless overridden by ‘-dumpdir’ or
‘-save-temps=*’, and dumpbase is set to the latter, unless overriden by
‘~dumpbase’. If there are multiple inputs or linking, this dumpbase may be
combined with dumppfx and taken from each input file. Auxiliary output
names for each input are formed by combining dumppfx, dumpbase minus
suffix, and the auxiliary output suffix; dump output names are only different
in that the suffix from dumpbase is retained.

When it comes to auxiliary and dump outputs created during LTO recompi-
lation, a combination of dumppfx and dumpbase, as given or as derived from
the linker output name but not from inputs, even in cases in which this com-
bination would not otherwise be used as such, is passed down with a trailing
period replacing the compiler-added dash, if any, as a ‘-dumpdir’ option to
lto-wrapper; being involved in linking, this program does not normally get
any ‘-dumpbase’ and ‘-dumpbase-ext’, and it ignores them.

When running sub-compilers, 1to-wrapper appends LTO stage names to the
received dumppfx, ensures it contains a directory component so that it overrides
any ‘—dumpdir’, and passes that as ‘~dumpbase’ to sub-compilers.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘~v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

-—target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class||["|qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.

Chapter 3: GCC Command Options 41

‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

‘target’ Display target-specific options. Unlike the ‘--target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘~-param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC. If
an option is supported by all languages, one needs to select ‘common’
class.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-0 output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:
--help=target,undocumented

)

The sense of a qualifier can be inverted by prefixing it with the ‘~’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings, ~joined, “undocumented
The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers

The ‘--help=" option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed. If ‘~-help’ is also specified anywhere on the command line then this
takes precedence over any ‘--help=" option.

If the ‘-Q’ option appears on the command line before the ‘~-help="option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,

42

—--version

Using the GNU Compiler Collection (GCC)

disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘--help=’ option is used).
Here is a truncated example from the ARM port of gcc:

% gcc -Q -mabi=2 --help=target -c
The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘-03’
by using;:

gcc -c -Q -03 --help=optimizers > /tmp/03-opts

gcc -¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

Display the version number and copyrights of the invoked GCC.

-pass-exit-codes

-pipe

Normally the gce program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-specs=file

-wrapper

Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults which the gcc driver program uses when determining what
switches to pass to ccl, cclplus, as, 1d, etc. More than one ‘-specs=file’
can be specified on the command line, and they are processed in order, from
left to right. See Section 3.20 [Spec Files|, page 493, for information about the
format of the file.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc -c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cclis ‘gdb —-—args ccl ...".

-ffile-prefix-map=old=new

When compiling files residing in directory ‘old’, record any references to
them in the result of the compilation as if the files resided in directory
‘new’ instead. Specifying this option is equivalent to specifying all the
individual ‘-f*-prefix-map’ options. This can be used to make reproducible

Chapter 3: GCC Command Options 43

builds that are location independent. See also ‘-fmacro-prefix-map’,
‘~fdebug-prefix-map’ and ‘-fprofile-prefix-map’.

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). FEach plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with ‘~fdump-ada-spec[-slim|’ above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

4 Y

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless ‘~x’ is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options

44

Using the GNU Compiler Collection (GCC)

meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 44, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 51, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

—ansi

-std=

In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘~std=c++98’.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ‘//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension _inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

—_ =

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options|, page 89.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is used. See
Section 6.59 [Other built-in functions provided by GCC], page 726, for details
of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
‘~=std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?7:
expression. On the other hand, when a GNU dialect of a standard is specified,

Chapter 3:

GCC Command Options 45

all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘~Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘~std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.

A value for this option must be provided; possible values are

‘c90’
‘c89’

‘1809899:1990’

Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1509899:199409’

‘c99’

‘c9x’

ISO C90 as modified in amendment 1.

‘1509899:1999’
‘1509899:199x’

‘cl1t’

‘clx’

ISO (C99. This standard is substantially completely supported,
modulo bugs and floating-point issues (mainly but not entirely
relating to optional C99 features from Annexes F and G). See
https://gcc.gnu.org/c99status.html for more information.
The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

‘1509899:2011°

‘c17’
‘c18’

ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point is-
sues (mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name ‘c1x’ is deprecated.

‘1809899:2017’
‘1509899:2018’

c2x

‘gnu90’
‘gnu89’

ISO C17, the 2017 revision of the ISO C standard (published in
2018). This standard is same as C11 except for corrections of de-
fects (all of which are also applied with ‘-std=c11’) and a new value
of __STDC_VERSION and so is supported to the same extent as
C11.

-

The next version of the ISO C standard, still under development.
The support for this version is experimental and incomplete.

GNU dialect of ISO C90 (including some C99 features).

https://gcc.gnu.org/c99status.html

46

‘gnu99’
‘gnu9x’

‘gnull’
‘gnulx’

‘gnul’?’
‘gnul8’

‘gnu2x’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’

‘c++11’
‘c++0x’

‘gnu++11’
‘gnu++0x’

‘c++14’
¢C++1y7

‘gnu++14’
‘gnu++1y’
‘cH+1T’
‘c++1z’

‘gnut++17’
‘gnu++1z’

‘c++20’
‘c++2a’

‘gnu++20’
‘gnu++2a’

‘c++2b’
‘c++23’

Using the GNU Compiler Collection (GCC)

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.
GNU dialect of ISO C11. The name ‘gnulx’ is deprecated.

GNU dialect of ISO C17. This is the default for C code.

The next version of the ISO C standard, still under development,
plus GNU extensions. The support for this version is experimental
and incomplete.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as ‘—ansi’ for C++ code.

GNU dialect of ‘-std=c++98’.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of ‘-std=c++11’. The name ‘gnu++0x’ is deprecated.

The 2014 ISO C++ standard plus amendments. The name ‘c++1y’
is deprecated.

GNU dialect of ‘-std=c++14’. The name ‘gnu++1y’ is deprecated.

The 2017 ISO C++ standard plus amendments. The name ‘c++12z’
is deprecated.

GNU dialect of ‘-std=c++17’. This is the default for C++ code.
The name ‘gnu++1z’ is deprecated.

The 2020 ISO C++ standard plus amendments. Support is experi-
mental, and could change in incompatible ways in future releases.
The name ‘c++2a’ is deprecated.

GNU dialect of ‘-std=c++20’. Support is experimental, and could
change in incompatible ways in future releases. The name ‘gnu++2a’
is deprecated.

The next revision of the ISO C++ standard, planned for 2023. Sup-
port is highly experimental, and will almost certainly change in
incompatible ways in future releases.

Chapter 3:

GCC Command Options 47

‘gnu++2b’
‘gnu++23’ GNU dialect of ‘-std=c++2b’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. In C, ‘-~ansi’ implies ‘~fno-asm’.

In C++, inline is a standard keyword and is not affected by this switch. You
may want to use the ‘-fno-gnu-keywords’ flag instead, which disables typeof
but not asm and inline. In C99 mode (‘-std=c99’ or ‘-std=gnu99’), this
switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.59 [Other built-in functions provided by GCC], page 726, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’

48

Using the GNU Compiler Collection (GCC)

for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-ffreestanding

-fgimple

-fgnu-tm

Assert that compilation targets a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable parsing of function definitions marked with __GIMPLE. This is an ex-
perimental feature that allows unit testing of GIMPLE passes.

When the option ‘-fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fgnu89-inline

The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.45 [An Inline Func-
tion is As Fast As a Macro|, page 649. Using this option is roughly equiva-
lent to adding the gnu_inline function attribute to all inline functions (see
Section 6.33 [Function Attributes], page 552).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option is not supported in ‘-std=c90’ or ‘-std=gnu90’ mode.

Chapter 3: GCC Command Options 49

—-fhosted

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

Assert that compilation targets a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;
struct ABC {
UOW UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.63 [Unnamed struct/union fields within
structs/unions], page 880, for details.

Note that this option is off for all targets except for x86 targets using ms-abi.

—-foffload=disable
—-foffload=default
-foffload=target-list

Specify for which OpenMP and OpenACC offload targets code should be gener-
ated. The default behavior, equivalent to ‘~foffload=default’, is to generate
code for all supported offload targets. The ‘~foffload=disable’ form gener-
ates code only for the host fallback, while ‘~foffload=target-1list’ generates
code only for the specified comma-separated list of offload targets.

Offload targets are specified in GCC’s internal target-triplet format. You can
run the compiler with ‘-=v’ to show the list of configured offload targets under
OFFLOAD_TARGET_NAMES.

-foffload-options=options
-foffload-options=target-triplet-list=options

With ‘~foffload-options=options’, GCC passes the specified options to the
compilers for all enabled offloading targets. You can specify options that apply
only to a specific target or targets by using the ‘-foffload-options=target-
list=options’ form. The target-list is a comma-separated list in the same
format as for the ‘~foffload=’ option.

Typical command lines are

50 Using the GNU Compiler Collection (GCC)

-foffload-options=-lgfortran -foffload-options=-1m
-foffload-options="-lgfortran -1m" -foffload-options=nvptx-none=-latomic
-foffload-options=amdgcn-amdhsa=-march=gfx906 -foffload-options=-1m

-fopenacc
Enable handling of OpenACC directives #pragma acc in C/C++ and !$acc
in Fortran. When ‘-fopenacc’ is specified, the compiler generates acceler-
ated code according to the OpenACC Application Programming Interface v2.6
https://www.openacc.org. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’.

-fopenacc-dim=geom
Specify default compute dimensions for parallel offload regions that do not
explicitly specify. The geom value is a triple of ’:’-separated sizes, in order
‘gang’, 'worker’ and, ’vector’. A size can be omitted, to use a target-specific
default value.

-fopenmp Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v4.5
https://www.openmp.org. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’. ‘-fopenmp’ implies
‘~fopenmp-simd’.

-fopenmp-simd
Enable handling of OpenMP’s SIMD directives with #pragma omp in C/C++
and !$omp in Fortran. Other OpenMP directives are ignored.

-fpermitted-flt-eval-methods=style

ISO/TEC TS 18661-3 defines new permissible values for FLT_EVAL_METHOD that
indicate that operations and constants with a semantic type that is an inter-
change or extended format should be evaluated to the precision and range of
that type. These new values are a superset of those permitted under C99/C11,
which does not specify the meaning of other positive values of FLT_EVAL_
METHOD. As such, code conforming to C11 may not have been written expecting
the possibility of the new values.

‘~fpermitted-flt-eval-methods’ specifies whether the compiler should allow
only the values of FLT_EVAL_METHOD specified in C99/C11, or the extended set
of values specified in ISO/IEC TS 18661-3.

style is either c11 or ts-18661-3 as appropriate.

The default when in a standards compliant mode (‘-std=c11’ or similar) is
‘~fpermitted-flt-eval-methods=c11’. The default when in a GNU dialect
(‘-std=gnull’ or similar) is ‘~fpermitted-flt-eval-methods=ts-18661-3".

-fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.

https://www.openacc.org
https://www.openmp.org

Chapter 3: GCC Command Options 51

See Section 6.63 [Unnamed struct/union fields within structs/unions], page 880,
for details. This is only supported for C, not C++.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘~funsigned-char’.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsso-struct=endianness
Set the default scalar storage order of structures and unions to the specified en-
dianness. The accepted values are ‘big-endian’, ‘little-endian’ and ‘native’
for the native endianness of the target (the default). This option is not sup-
ported for C++.

Warning: the ‘-fsso-struct’ switch causes GCC to generate code that is not
binary compatible with code generated without it if the specified endianness is
not the native endianness of the target.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file ‘firstClass.C’ like this:

gt++ -g —fstrict-enums -0 -c firstClass.C

In this example, only ‘-fstrict-enums’ is an option meant only for C++ programs; you can
use the other options with any language supported by GCC.

3

Some options for compiling C programs, such as ‘-std’, are also relevant for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect|, page 44.

52 Using the GNU Compiler Collection (GCC)

Here is a list of options that are only for compiling C++ programs:

—-fabi-version=n
Use version n of the C++ ABI. The default is version 0.

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was
the default through G++ 4.9.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const/static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin
type and corrects the mangling of lambdas in default argument scope.

Version 8, which first appeared in G++ 4.9, corrects the substitution behavior
of function types with function-cv-qualifiers.

Version 9, which first appeared in G++ 5.2, corrects the alignment of nullptr_t.

Version 10, which first appeared in G++ 6.1, adds mangling of attributes that
affect type identity, such as ia32 calling convention attributes (e.g. ‘stdcall’).

Version 11, which first appeared in G++ 7, corrects the mangling of sizeof... ex-
pressions and operator names. For multiple entities with the same name within
a function, that are declared in different scopes, the mangling now changes start-
ing with the twelfth occurrence. It also implies ‘-fnew-inheriting-ctors’.

Version 12, which first appeared in G++ 8, corrects the calling conventions for
empty classes on the x86_64 target and for classes with only deleted copy/move
constructors. It accidentally changes the calling convention for classes with a
deleted copy constructor and a trivial move constructor.

Version 13, which first appeared in G++ 8.2, fixes the accidental change in
version 12.

Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr
expression.

Version 15, which first appeared in G++ 11, changes the mangling of __alignof _
_ to be distinct from that of alignof, and dependent operator names.

See also ‘-Wabi’.

Chapter 3: GCC Command Options 53

-fabi-compat-version=n

On targets that support strong aliases, G++ works around mangling changes by
creating an alias with the correct mangled name when defining a symbol with
an incorrect mangled name. This switch specifies which ABI version to use for
the alias.

With ‘~-fabi-version=0’ (the default), this defaults to 11 (GCC 7 compatibil-
ity). If another ABI version is explicitly selected, this defaults to 0. For com-
patibility with GCC versions 3.2 through 4.9, use ‘-fabi-compat-version=2’.

If this option is not provided but ‘-Wabi=n’ is, that version is used for com-
patibility aliases. If this option is provided along with ‘~Wabi’ (without the
version), the version from this option is used for the warning.

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-faligned-new

—-fchar8_t

Enable support for C++17 new of types that require more alignment than
void* ::operator new(std::size_t) provides. A numeric argument such as
-faligned-new=32 can be used to specify how much alignment (in bytes) is
provided by that function, but few users will need to override the default of
alignof (std::max_align_t).

This flag is enabled by default for ‘-std=c++17’.

-fno-char8_t

Enable support for char8_t as adopted for C++20. This includes the addition
of a new char8_t fundamental type, changes to the types of UTF-8 string and
character literals, new signatures for user-defined literals, associated standard
library updates, and new __cpp_char8_t and __cpp_lib_char8_t feature test
macros.

This option enables functions to be overloaded for ordinary and UTF-8 strings:

int f(const char *); // #1
int f(const char8_t *); // #2
int vl = £("text"); // Calls #1
int v2 = f(u8"text"); // Calls #2

and introduces new signatures for user-defined literals:

int operator""_udll(char8_t);

int v3 = u8’x’_udlil;

int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;

template<typename T, T...> int operator""_udl3();
int vb = u8"text"_udl3;

The change to the types of UTF-8 string and character literals introduces in-
compatibilities with ISO C++11 and later standards. For example, the following
code is well-formed under ISO C++11, but is ill-formed when ‘-fchar8_t’ is
specified.

char cal[] = u8"xx"; // error: char-array initialized from wide
// string

54 Using the GNU Compiler Collection (GCC)

const char *cp = u8"xx";// error: invalid conversion from

// ‘const char8_t*’ to ‘const charx’
int f(const charx);
auto v = f(u8"xx"); // error: invalid conversion from

// ‘const char8_t*’ to ‘const charx’
std::string s{u8"xx"}; // error: no matching function for call to

// ‘std::basic_string<char>::basic_string()’
using namespace std::literals;
s = u8"xx"s; // error: conversion from

// ‘basic_string<char8_t>’ to non-scalar

// type ‘basic_string<char>’ requested

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
throw (), in which case the compiler always checks the return value even without
this option. In all other cases, when operator new has a non-empty exception
specification, memory exhaustion is signalled by throwing std::bad_alloc.
See also ‘new (nothrow)’.

-fconcepts

-fconcepts-ts
Below ‘-std=c++20’, ‘~fconcepts’ enables support for the C++ Extensions for
Concepts Technical Specification, ISO 19217 (2015).

With ‘-std=c++20’ and above, Concepts are part of the language standard, so
‘~fconcepts’ defaults to on. But the standard specification of Concepts differs
significantly from the TS, so some constructs that were allowed in the TS but
didn’t make it into the standard can still be enabled by ‘~fconcepts-ts’.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fconstexpr-cache-depth=n

Set the maximum level of nested evaluation depth for C++11 constexpr func-
tions that will be cached to n. This is a heuristic that trades off compilation
speed (when the cache avoids repeated calculations) against memory consump-
tion (when the cache grows very large from highly recursive evaluations). The
default is 8. Very few users are likely to want to adjust it, but if your code does
heavy constexpr calculations you might want to experiment to find which value
works best for you.

-fconstexpr-fp-except
Annex F of the C standard specifies that IEC559 floating point exceptions
encountered at compile time should not stop compilation. C++ compilers have
historically not followed this guidance, instead treating floating point division
by zero as non-constant even though it has a well defined value. This flag tells
the compiler to give Annex F priority over other rules saying that a particular
operation is undefined.
constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except

Chapter 3: GCC Command Options 55

-fconstexpr-loop-limit=n
Set the maximum number of iterations for a loop in C++14 constexpr functions
to n. A limit is needed to detect infinite loops during constant expression
evaluation. The default is 262144 (1<<18).

-fconstexpr-ops-limit=n
Set the maximum number of operations during a single constexpr evaluation.
Even when number of iterations of a single loop is limited with the above limit,
if there are several nested loops and each of them has many iterations but
still smaller than the above limit, or if in a body of some loop or even outside
of a loop too many expressions need to be evaluated, the resulting constexpr
evaluation might take too long. The default is 33554432 (1<<25).

—-fcoroutines
Enable support for the C++ coroutines extension (experimental).

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases. This option also causes G++ to call trivial member functions which
otherwise would be expanded inline.

In C++17, the compiler is required to omit these temporaries, but this option
still affects trivial member functions.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining NDEBUG. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

-fextern-tls-init

-fno-extern-tls-init
The C++11 and OpenMP standards allow thread_local and threadprivate
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the ‘~fno-extern-tls-init’ option.

On targets that support symbol aliases, the default is ‘-fextern-tls-init’.
On targets that do mnot support symbol aliases, the default is
‘~fno-extern-tls-init’.

56 Using the GNU Compiler Collection (GCC)

-ffold-simple-inlines

-fno-fold-simple-inlines
Permit the C++ frontend to fold calls to std::move, std::forward,
std::addressof and std::as_const. In contrast to inlining, this means no
debug information will be generated for such calls. Since these functions are
rarely interesting to debug, this flag is enabled by default unless ‘-fno-inline’
is active.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as an
identifier. You can use the keyword __typeof__ instead. This option is implied
by the strict ISO C++ dialects: ‘-ansi’, ‘-std=c++98’, ‘-std=c++11’, etc.

-fimplicit-constexpr
Make inline functions implicitly constexpr, if they satisfy the requirements for a
constexpr function. This option can be used in C++14 mode or later. This can
result in initialization changing from dynamic to static and other optimizations.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. If you use this option, you
must take care to structure your code to include all the necessary explicit in-
stantiations to avoid getting undefined symbols at link time. See Section 7.5
[Template Instantiation|, page 888, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
#pragma implementation. This causes linker errors if these functions are not
inlined everywhere they are called.

-fmodules-ts

-fno-modules-ts
Enable support for C++20 modules (see Section 3.23 [C++ Modules], page 507).
The ‘-fno-modules-ts’ is usually not needed, as that is the default. Even
though this is a C++20 feature, it is not currently implicitly enabled by selecting
that standard version.

-fmodule-header
-fmodule-header=user
-fmodule-header=system
Compile a header file to create an importable header unit.

-fmodule-implicit-inline
Member functions defined in their class definitions are not implicitly inline for
modular code. This is different to traditional C++ behavior, for good reasons.
However, it may result in a difficulty during code porting. This option makes

Chapter 3: GCC Command Options 57

such function definitions implicitly inline. It does however generate an ABI
incompatibility, so you must use it everywhere or nowhere. (Such definitions
outside of a named module remain implicitly inline, regardless.)

-fno-module-lazy
Disable lazy module importing and module mapper creation.

-fmodule-mapper=[hostname|: port[?ident]

-fmodule-mapper=|program|?ident]| args. ..

-fmodule-mapper==socket|?ident|

-fmodule-mapper=<>[inout|[?ident]

-fmodule-mapper=<in>out|[?ident|

-fmodule-mapper=rfile[?ident]
An oracle to query for module name to filename mappings. If unspecified the
CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-
process default is provided.

—-fmodule-only
Only emit the Compiled Module Interface, inhibiting any object file.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fnew-inheriting-ctors
Enable the P0136 adjustment to the semantics of C++11 constructor inheri-
tance. This is part of C++17 but also considered to be a Defect Report against
C++11 and C++14. This flag is enabled by default unless ‘~fabi-version=10’
or lower is specified.

-fnew-ttp-matching
Enable the P0522 resolution to Core issue 150, template template parameters
and default arguments: this allows a template with default template arguments
as an argument for a template template parameter with fewer template param-
eters. This flag is enabled by default for ‘-std=c++17".

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

—-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

58

Using the GNU Compiler Collection (GCC)

-fno-optional-diags

Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive

Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ allows some nonconforming code to compile.

—-fno-pretty-templates

—-fno-rtti

When an error message refers to a specialization of a function template, the com-
piler normally prints the signature of the template followed by the template ar-
guments and any typedefs or typenames in the signature (e.g. void £(T) [with
T = int] rather than void f (int)) so that it’s clear which template is involved.
When an error message refers to a specialization of a class template, the com-
piler omits any template arguments that match the default template arguments
for that template. If either of these behaviors make it harder to understand
the error message rather than easier, you can use ‘-fno-pretty-templates’ to
disable them.

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (dynamic_cast and
typeid). If you don’t use those parts of the language, you can save some space
by using this flag. Note that exception handling uses the same information,
but G++ generates it as needed. The dynamic_cast operator can still be used
for casts that do not require run-time type information, i.e. casts to void * or
to unambiguous base classes.

Mixing code compiled with ‘-frtti’ with that compiled with ‘-fno-rtti’ may
not work. For example, programs may fail to link if a class compiled with
‘~fno-rtti’ is used as a base for a class compiled with ‘~frtti’.

-fsized-deallocation

Enable the built-in global declarations

void operator delete (void *, std::size_t) noexcept;

void operator delete[] (void *, std::size_t) noexcept;
as introduced in C++14. This is useful for user-defined replacement dealloca-
tion functions that, for example, use the size of the object to make deallo-
cation faster. Enabled by default under ‘-std=c++14’ and above. The flag
‘-Wsized-deallocation’ warns about places that might want to add a defini-
tion.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

Chapter 3: GCC Command Options 59

-fstrong-eval-order
Evaluate member access, array subscripting, and shift expressions in left-to-
right order, and evaluate assignment in right-to-left order, as adopted for C++17.
Enabled by default with ‘-std=c++17’. ‘~-fstrong-eval-order=some’ enables
just the ordering of member access and shift expressions, and is the default
without ‘-std=c++17’.

-ftemplate-backtrace-limit=n
Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes

std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

—fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

60

Using the GNU Compiler Collection (GCC)

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 888.

-fvisibility-ms-compat

-fno-weak

This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are
different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only
for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-fext-numeric-literals (C++ and Objective-C++ only)

Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes. This is on by default for all
pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’,
‘-std=gnu++11’, ‘-std=gnu++14’. This option is off by default for ISO C++11
onwards (‘-std=c++11’, ...).

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

Chapter 3: GCC Command Options 61

-flang-info-include-translate

-flang-info-include-translate-not

-flang-info-include-translate=header
Inform of include translation events. The first will note accepted include trans-
lations, the second will note declined include translations. The header form
will inform of include translations relating to that specific header. If header is
of the form "user" or <system> it will be resolved to a specific user or system
header using the include path.

-flang-info-module-cmi

-flang-info-module-cmi=module
Inform of Compiled Module Interface pathnames. The first will note all read
CMI pathnames. The module form will not reading a specific module’s CMI.
module may be a named module or a header-unit (the latter indicated by either
being a pathname containing directory separators or enclosed in <> or "").

-stdlib=1ibstdc++,1libc++
When G++ is configured to support this option, it allows specification of alter-
nate C++ runtime libraries. Two options are available: libstdc++ (the default,
native C++ runtime for G++) and libc++ which is the C++ runtime installed on
some operating systems (e.g. Darwin versions from Darwinll onwards). The
option switches G++ to use the headers from the specified library and to emit
-1stdc++ or —1lc++ respectively, when a C++ runtime is required for linking.

In addition, these warning options have meanings only for C++ programs:

-Wabi-tag (C++ and Objective-C++ only)
Warn when a type with an ABI tag is used in a context that does not have
that ABI tag. See Section 7.7 [C++ Attributes], page 891 for more information
about ABI tags.

-Wcomma-subscript (C++ and Objective-C++ only)
Warn about uses of a comma expression within a subscripting expression. This
usage was deprecated in C++20 and is going to be removed in C++23. However,
a comma expression wrapped in () is not deprecated. Example:
void f(int *a, int b, int c) {
alb,c]; // deprecated in C++20, invalid in C++23
al(b,c)]; // OK
}
In C++23 it is valid to have comma separated expressions in a subscript when
an overloaded subscript operator is found and supports the right number and
types of arguments. G++ will accept the formerly valid syntax for code that
is not valid in C++23 but used to be valid but deprecated in C++20 with a
pedantic warning that can be disabled with ‘-Wno-comma-subscript’.

Enabled by default with ‘-std=c++20’ unless ‘-Wno-deprecated’, and with
‘-std=c++23’ regardless of ‘~-Wno-deprecated’.

-Wctad-maybe-unsupported (C++ and Objective-C++ only)
Warn when performing class template argument deduction (CTAD) on a type
with no explicitly written deduction guides. This warning will point out cases

62 Using the GNU Compiler Collection (GCC)

where CTAD succeeded only because the compiler synthesized the implicit de-
duction guides, which might not be what the programmer intended. Certain
style guides allow CTAD only on types that specifically "opt-in"; i.e., on types
that are designed to support CTAD. This warning can be suppressed with the
following pattern:

struct allow_ctad_t; // any name works

template <typename T> struct S {
S(m {1}
};

S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered]

-Wctor-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when delete is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

-Wdeprecated-copy (C++ and Objective-C++ only)
Warn that the implicit declaration of a copy constructor or copy assignment
operator is deprecated if the class has a user-provided copy constructor or
copy assignment operator, in C++11 and up. This warning is enabled by
‘~Wextra’. With ‘-Wdeprecated-copy-dtor’, also deprecate if the class has
a user-provided destructor.

-Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
different enumeration type. This conversion was deprecated in C++20. For
example:

enum E1 { e };

enum E2 { f };

int k = £ - e;
‘~-Wdeprecated-enum-enum-conversion’ is enabled by default with
‘-std=c++20’. In pre-C++20 dialects, this warning can be enabled by
‘~Wenum-conversion’.

-Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)
Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
floating-point type. This conversion was deprecated in C++20. For example:
enum E1 { e };

enum E2 { f };
bool b = e <= 3.7;

Chapter 3: GCC Command Options 63

‘~Wdeprecated-enum-float-conversion’ is enabled by default with
‘-std=c++20’. In pre-C++20 dialects, this warning can be enabled by
‘~Wenum-conversion’.

-Wno-init-list-lifetime (C++ and Objective-C++ only)
Do not warn about uses of std::initializer_list that are likely to result
in dangling pointers. Since the underlying array for an initializer_list is
handled like a normal C++ temporary object, it is easy to inadvertently keep a
pointer to the array past the end of the array’s lifetime. For example:

e If a function returns a temporary initializer_list, or a local
initializer_list variable, the array’s lifetime ends at the end of the
return statement, so the value returned has a dangling pointer.

e If a new-expression creates an initializer_list, the array only lives until
the end of the enclosing full-expression, so the initializer_list in the
heap has a dangling pointer.

e When an initializer_list variable is assigned from a brace-enclosed ini-
tializer list, the temporary array created for the right side of the assignment
only lives until the end of the full-expression, so at the next statement the
initializer_list variable has a dangling pointer.

// 1i’s initial underlying array lives as long as 1li

std::initializer_list<int> 1i = { 1,2,3 };

// assignment changes 1li to point to a temporary array

1li ={4, 51};

// now the temporary is gone and li has a dangling pointer

int 1 = 1i.begin() [0] // undefined behavior

e When a list constructor stores the begin pointer from the initializer_

list argument, this doesn’t extend the lifetime of the array, so if a class
variable is constructed from a temporary initializer_list, the pointer
is left dangling by the end of the variable declaration statement.

-Winvalid-imported-macros
Verify all imported macro definitions are valid at the end of compilation. This
is not enabled by default, as it requires additional processing to determine. It
may be useful when preparing sets of header-units to ensure consistent macros.

-Wno-literal-suffix (C++ and Objective-C++ only)
Do not warn when a string or character literal is followed by a ud-suffix which
does not begin with an underscore. As a conforming extension, GCC treats
such suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from <inttypes.h>. For
example:
#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %" PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

64

Using the GNU Compiler Collection (GCC)

This option also controls warnings when a user-defined literal operator is de-
clared with a literal suffix identifier that doesn’t begin with an underscore.
Literal suffix identifiers that don’t begin with an underscore are reserved for
future standardization.

These warnings are enabled by default.

-Wno-narrowing (C++ and Objective-C++ only)

For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but ‘~Wno-narrowing’ suppresses the diagnostic. Note that this does not affect

the meaning of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE contexts.

With ‘~Wnarrowing’ in C++98, warn when a narrowing conversion prohibited
by C++11 occurs within ‘{ }’, e.g.

int i = { 2.2 }; // error: narrowing from double to int

This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.

-Wnoexcept (C++ and Objective-C++ only)

Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. throw() or
noexcept) but is known by the compiler to never throw an exception.

-Wnoexcept-type (C++ and Objective-C++ only)

Warn if the C++17 feature making noexcept part of a function type changes
the mangled name of a symbol relative to C++14. Enabled by ‘-Wabi’ and
‘~Wc++17-compat’.

As an example:

template <class T> void f(T t) { t(0); };
void g() noexcept;
void hO { £(g);

In C++14, £ calls £<void (*) (0>, but in C++17 it calls £<void (*) (Dnoexcept>.

-Wclass-memaccess (C++ and Objective-C++ only)

Warn when the destination of a call to a raw memory function such as memset
or memcpy is an object of class type, and when writing into such an object might
bypass the class non-trivial or deleted constructor or copy assignment, violate
const-correctness or encapsulation, or corrupt virtual table pointers. Modifying
the representation of such objects may violate invariants maintained by member
functions of the class. For example, the call to memset below is undefined
because it modifies a non-trivial class object and is, therefore, diagnosed. The
safe way to either initialize or clear the storage of objects of such types is by
using the appropriate constructor or assignment operator, if one is available.

std::string str = "abc";

memset (&str, 0, sizeof str);
The ‘-Wclass-memaccess’ option is enabled by ‘-Wall’. Explicitly casting the
pointer to the class object to void * or to a type that can be safely accessed
by the raw memory function suppresses the warning.

Chapter 3: GCC Command Options 65

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible but
unsafe to delete an instance of a derived class through a pointer to the class itself
or base class. This warning is automatically enabled if ‘~-Weffc++’ is specified.

-Wregister (C++ and Objective-C++ only)
Warn on uses of the register storage class specifier, except when it is part of
the GNU Section 6.47.5 [Explicit Register Variables], page 705 extension. The
use of the register keyword as storage class specifier has been deprecated in
C++11 and removed in C++17. Enabled by default with ‘-std=c++17’.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AQ: § (0, i (1) {3}
};
The compiler rearranges the member initializers for i and j to match the dec-
laration order of the members, emitting a warning to that effect. This warning

is enabled by ‘-Wall’.

-Wno-pessimizing-move (C++ and Objective-C++ only)

This warning warns when a call to std: :move prevents copy elision. A typical
scenario when copy elision can occur is when returning in a function with a class
return type, when the expression being returned is the name of a non-volatile
automatic object, and is not a function parameter, and has the same type as
the function return type.

struct T {

}

T fn()

{
T t;

return std::move (t);

}
But in this example, the std: :move call prevents copy elision.

This warning is enabled by ‘-Wall’.

-Wno-redundant-move (C++ and Objective-C++ only)
This warning warns about redundant calls to std: :move; that is, when a move
operation would have been performed even without the std: :move call. This
happens because the compiler is forced to treat the object as if it were an rvalue
in certain situations such as returning a local variable, where copy elision isn’t
applicable. Consider:
struct T {

};

66

Using the GNU Compiler Collection (GCC)

T fn(T t)
{

;ééurn std::move (t);

}
Here, the std: :move call is redundant. Because G++ implements Core Issue
1579, another example is:

struct T { // convertible to U

1

struct U {

};

U fn()

{
T t;

return std::move (t);
}

In this example, copy elision isn’t applicable because the type of the expression
being returned and the function return type differ, yet G++ treats the return
value as if it were designated by an rvalue.

This warning is enabled by ‘-Wextra’.

-Wrange-loop-construct (C++ and Objective-C++ only)

This warning warns when a C++ range-based for-loop is creating an unnecessary
copy. This can happen when the range declaration is not a reference, but
probably should be. For example:

struct S { char arr[128]; };
void fn () {
S arr[5];
for (const auto x : arr) { ... }
}
It does not warn when the type being copied is a trivially-copyable type whose

size is less than 64 bytes.

This warning also warns when a loop variable in a range-based for-loop is ini-
tialized with a value of a different type resulting in a copy. For example:
void fn() {
int arr([10];
for (const double &x : arr) { ... }
}
In the example above, in every iteration of the loop a temporary value of type
double is created and destroyed, to which the reference const double & is
bound.

This warning is enabled by ‘-Wall’.

-Wredundant-tags (C++ and Objective-C++ only)

Warn about redundant class-key and enum-key in references to class types and
enumerated types in contexts where the key can be eliminated without causing
an ambiguity. For example:

struct foo;

Chapter 3: GCC Command Options 67

struct foo *p; // warn that keyword struct can be eliminated

On the other hand, in this example there is no warning:

struct foo;
void foo (); // "hides" struct foo
void bar (struct foo&); // no warning, keyword struct is necessary

-Wno-subobject-linkage (C++ and Objective-C++ only)

Do not warn if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on a type
B with no or internal linkage, defining it in multiple translation units would
be an ODR violation because the meaning of B is different in each translation
unit. If A only appears in a single translation unit, the best way to silence the
warning is to give it internal linkage by putting it in an anonymous namespace
as well. The compiler doesn’t give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions. ‘~Wsubobject-linkage’
is enabled by default.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, ||, or ,.

This option also enables ‘-Wnon-virtual-dtor’, which is also one of the effec-
tive C++ recommendations. However, the check is extended to warn about the
lack of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-exceptions (C++ and Objective-C++ only)
Disable the warning about the case when an exception handler is shadowed by
another handler, which can point out a wrong ordering of exception handlers.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)
Disable warnings when non-template friend functions are declared within a
template. In very old versions of GCC that predate implementation of the ISO
standard, declarations such as ‘friend int foo(int)’, where the name of the

68 Using the GNU Compiler Collection (GCC)

friend is an unqualified-id, could be interpreted as a particular specialization
of a template function; the warning exists to diagnose compatibility problems,
and is enabled by default.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (dynamic_cast, static_cast, reinterpret_
cast, and const_cast) are less vulnerable to unintended effects and much
easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f£(Q);

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->£();

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

-Wtemplates (C++ and Objective-C++ only)
Warn when a primary template declaration is encountered. Some coding rules
disallow templates, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still use the
STL. One may also instantiate or specialize templates.

-Wmismatched-new-delete (C++ and Objective-C++ only)

Warn for mismatches between calls to operator new or operator delete and
the corresponding call to the allocation or deallocation function. This includes
invocations of C++ operator delete with pointers returned from either mis-
matched forms of operator new, or from other functions that allocate objects
for which the operator delete isn’t a suitable deallocator, as well as calls
to other deallocation functions with pointers returned from operator new for
which the deallocation function isn’t suitable.

For example, the delete expression in the function below is diagnosed because
it doesn’t match the array form of the new expression the pointer argument was
returned from. Similarly, the call to free is also diagnosed.

Chapter 3: GCC Command Options 69

void £ O
{
int *a = new int[n];
delete a; // warning: mismatch in array forms of expressions

char *p = new char[n];
free (p); // warning: mismatch between new and free
}
The related option ‘-Wmismatched-dealloc’ diagnoses mismatches involving
allocation and deallocation functions other than operator new and operator
delete.

‘~Wmismatched-new-delete’ is included in ‘-Wall’.

-Wmismatched-tags (C++ and Objective-C++ only)
Warn for declarations of structs, classes, and class templates and their special-
izations with a class-key that does not match either the definition or the first
declaration if no definition is provided.

For example, the declaration of struct Object in the argument list of draw
triggers the warning. To avoid it, either remove the redundant class-key struct
or replace it with class to match its definition.

class Object {
public:
virtual ~“Object () = 0;

i;id draw (struct Objectx);
It is not wrong to declare a class with the class-key struct as the example above
shows. The ‘-Wmismatched-tags’ option is intended to help achieve a consistent
style of class declarations. In code that is intended to be portable to Windows-
based compilers the warning helps prevent unresolved references due to the
difference in the mangling of symbols declared with different class-keys. The
option can be used either on its own or in conjunction with ‘-Wredundant-tags’.

-Wmultiple-inheritance (C++ and Objective-C++ only)
Warn when a class is defined with multiple direct base classes. Some coding
rules disallow multiple inheritance, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so one
can still use the STL. One may also define classes that indirectly use multiple
inheritance.

-Wvirtual-inheritance
Warn when a class is defined with a virtual direct base class. Some coding rules
disallow multiple inheritance, and this may be used to enforce that rule. The
warning is inactive inside a system header file, such as the STL, so one can still
use the STL. One may also define classes that indirectly use virtual inheritance.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it is moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment

70 Using the GNU Compiler Collection (GCC)

operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wnamespaces
Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is in-
active inside a system header file, such as the STL, so one can still use the STL.
One may also use using directives and qualified names.

-Wno-terminate (C++ and Objective-C++ only)
Disable the warning about a throw-expression that will immediately result in a
call to terminate.

-Wno-vexing-parse (C++ and Objective-C++ only)
Warn about the most vexing parse syntactic ambiguity. This warns about the
cases when a declaration looks like a variable definition, but the C++ language
requires it to be interpreted as a function declaration. For instance:

void f(double a) {
int 1Q); // extern int i (void);
int n(int(a)); // extern int n (int);

}

Another example:

struct S { S(int); };
void f(double a) {

S x(int(a)); // extern struct S x (int);
S y(int()); // extern struct S y (int (*) (void));
S z(); // extern struct S z (void);

}

The warning will suggest options how to deal with such an ambiguity; e.g., it
can suggest removing the parentheses or using braces instead.

This warning is enabled by default.

-Wno-class-conversion (C++ and Objective-C++ only)
Do not warn when a conversion function converts an object to the same type,
to a base class of that type, or to void; such a conversion function will never be
called.

-Wvolatile (C++ and Objective-C++ only)

Warn about deprecated uses of the volatile qualifier. This includes postfix
and prefix ++ and -- expressions of volatile-qualified types, using simple as-
signments where the left operand is a volatile-qualified non-class type for their
value, compound assignments where the left operand is a volatile-qualified
non-class type, volatile-qualified function return type, volatile-qualified pa-
rameter type, and structured bindings of a volatile-qualified type. This usage
was deprecated in C++20.

Enabled by default with ‘-std=c++20’.
-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)

Warn when a literal ‘0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

Chapter 3: GCC Command Options 71

-Waligned-new
Warn about a new-expression of a type that requires greater alignment than
the alignof (std: :max_align_t) but uses an allocation function without an
explicit alignment parameter. This option is enabled by ‘-Wall’.

Normally this only warns about global allocation functions, but
‘~-Waligned-new=all’ also warns about class member allocation functions.

-Wno-placement-new
-Wplacement-new=n
Warn about placement new expressions with undefined behavior, such as con-
structing an object in a buffer that is smaller than the type of the object. For
example, the placement new expression below is diagnosed because it attempts
to construct an array of 64 integers in a buffer only 64 bytes large.
char buf [64];
new (buf) int[64];

This warning is enabled by default.

-Wplacement-new=1
This is the default warning level of ‘~-Wplacement-new’. At this
level the warning is not issued for some strictly undefined constructs
that GCC allows as extensions for compatibility with legacy code.
For example, the following new expression is not diagnosed at this
level even though it has undefined behavior according to the C++
standard because it writes past the end of the one-element array.

struct S { int n, al1l; };
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->al0]);
new (s->a)int [32]();

-Wplacement-new=2

At this level, in addition to diagnosing all the same constructs as
at level 1, a diagnostic is also issued for placement new expressions
that construct an object in the last member of structure whose type
is an array of a single element and whose size is less than the size of
the object being constructed. While the previous example would be
diagnosed, the following construct makes use of the flexible member
array extension to avoid the warning at level 2.

struct S { int n, all; };
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->al[0]);
new (s->a)int [32]();

-Wcatch-value

-Wcatch-value=n (C++ and Objective-C++ only)
Warn about catch handlers that do not catch via reference. With
‘~Wcatch-value=1’ (or ‘-Wcatch-value’ for short) warn about polymorphic
class types that are caught by value. With ‘-Wcatch-value=2" warn about all
class types that are caught by value. With ‘-Wcatch-value=3" warn about all
types that are not caught by reference. ‘-Wcatch-value’ is enabled by ‘-Wall’.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

72 Using the GNU Compiler Collection (GCC)

-Wno-delete-incomplete (C++ and Objective-C++ only)
Do not warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.

-Wextra-semi (C++, Objective-C++ only)
Warn about redundant semicolons after in-class function definitions.

-Wno-inaccessible-base (C++, Objective-C++ only)
This option controls warnings when a base class is inaccessible in a class derived
from it due to ambiguity. The warning is enabled by default. Note that the
warning for ambiguous virtual bases is enabled by the ‘~Wextra’ option.
struct A { int a; };

struct B : A { };

struct C : B, A { };

-Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

-Wno-invalid-offsetof (C++ and Objective-C++ only)
Suppress warnings from applying the offsetof macro to a non-POD type.
According to the 2014 ISO C++ standard, applying offsetof to a non-standard-
layout type is undefined. In existing C++ implementations, however, offsetof
typically gives meaningful results. This flag is for users who are aware that
they are writing nonportable code and who have deliberately chosen to ignore
the warning about it.

The restrictions on offsetof may be relaxed in a future version of the C++
standard.

-Wsized-deallocation (C++ and Objective-C++ only)
Warn about a definition of an unsized deallocation function
void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;
without a definition of the corresponding sized deallocation function
void operator delete (void *, std::size_t) noexcept;

void operator delete[] (void *, std::size_t) noexcept;

or vice versa. Enabled by ‘-Wextra’ along with ‘-fsized-deallocation’.

-Wsuggest-final-types
Warn about types with virtual methods where code quality would be improved
if the type were declared with the C++11 final specifier, or, if possible, de-
clared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with link-
time optimization, where the information about the class hierarchy graph is
more complete.

-Wsuggest-final-methods
Warn about virtual methods where code quality would be improved if the
method were declared with the C++11 final specifier, or, if possible, its type

Chapter 3: GCC Command Options 73

were declared in an anonymous namespace or with the final specifier. This
warning is more effective with link-time optimization, where the information
about the class hierarchy graph is more complete. It is recommended to first
consider suggestions of ‘-Wsuggest-final-types’ and then rebuild with new
annotations.

-Wsuggest-override
Warn about overriding virtual functions that are not marked with the override
keyword.

-Wuse-after—-free

-Wuse-after-free=n
Warn about uses of pointers to dynamically allocated objects that have been
rendered indeterminate by a call to a deallocation function. The warning is en-
abled at all optimization levels but may yield different results with optimization
than without.

-Wuse-after-free=1

At level 1 the warning attempts to diagnose only unconditional uses
of pointers made indeterminate by a deallocation call or a successful
call to realloc, regardless of whether or not the call resulted in
an actual reallocatio of memory. This includes double-free calls
as well as uses in arithmetic and relational expressions. Although
undefined, uses of indeterminate pointers in equality (or inequality)
expressions are not diagnosed at this level.

-Wuse-after-free=2
At level 2, in addition to unconditional uses, the warning also diag-
noses conditional uses of pointers made indeterminate by a deallo-
cation call. As at level 2, uses in equality (or inequality) expressions
are not diagnosed. For example, the second call to free in the fol-
lowing function is diagnosed at this level:

struct A { int refcount; void *data; };

void release (struct A *p)

{
int refcount = --p->refcount;
free (p);
if (refcount == 0)
free (p->data); // warning: p may be used after free
}

-Wuse-after-free=3

At level 3, the warning also diagnoses uses of indeterminate pointers
in equality expressions. All uses of indeterminate pointers are un-
defined but equality tests sometimes appear after calls to realloc
as an attempt to determine whether the call resulted in relocating
the object to a different address. They are diagnosed at a separate
level to aid legacy code gradually transition to safe alternatives.
For example, the equality test in the function below is diagnosed
at this level:

74 Using the GNU Compiler Collection (GCC)

void adjust_pointers (int#**, int);

void grow (int **p, int n)
{
int **q = (int**)realloc (p, n *= 2);
if (q == p)
return;
adjust_pointers ((int**)q, n);
}
To avoid the warning at this level, store offsets into allocated mem-
ory instead of pointers. This approach obviates needing to adjust

the stored pointers after reallocation.
‘~Wuse-after-free=2’ is included in ‘-Wall’.

-Wuseless-cast (C++ and Objective-C++ only)
Warn when an expression is casted to its own type.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file ‘some_class.m’ like this:

gcc -g —-fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeX'T runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
overrides the ‘-fconstant-string-class’ setting and cause @"..." literals to
be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

Chapter 3: GCC Command Options 75

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n
Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++. This option is required to use the Objective-C
keywords @try, @throw, @catch, @finally and @synchronized. This option is
available with both the GNU runtime and the NeXT runtime (but not available
in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).

76

-fobjc-gc

Using the GNU Compiler Collection (GCC)

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘-fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

-fno-local-ivars

By default instance variables in Objective-C can be accessed as if they were
local variables from within the methods of the class they’re declared in. This
can lead to shadowing between instance variables and other variables declared
either locally inside a class method or globally with the same name. Specify-
ing the ‘~fno-local-ivars’ flag disables this behavior thus avoiding variable
shadowing issues.

Chapter 3: GCC Command Options 77

-fivar-visibility=[public|protected|private|package]
Set the default instance variable visibility to the specified option so that instance
variables declared outside the scope of any access modifier directives default to
the specified visibility.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-property-assign-default (Objective-C and Objective-C++ only)
Do not warn if a property for an Objective-C object has no assign semantics
specified.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wobjc-root-class (Objective-C and Objective-C++ only)
Warn if a class interface lacks a superclass. Most classes will inherit from
NSObject (or Object) for example. When declaring classes intended to be
root classes, the warning can be suppressed by marking their interfaces with
__attribute__((objc_root_class)).

-Wselector (Objective-C and Objective-C++ only)

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘~fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and /or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)
Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has

78 Using the GNU Compiler Collection (GCC)

been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

—-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. If
n is zero, then no line-wrapping is done; each error message appears on a single
line. This is the default for all front ends.

Note - this option also affects the display of the ‘#error’ and ‘#warning’ pre-
processor directives, and the ‘deprecated’ function/type/variable attribute.
It does not however affect the ‘pragma GCC warning’ and ‘pragma GCC error’
pragmas.

-fdiagnostics-plain-output

This option requests that diagnostic output look as plain as possible,
which may be useful when running dejagnu or other utilities that need to
parse diagnostics output and prefer that it remain more stable over time.
‘~-fdiagnostics-plain-output’ is currently equivalent to the following
options:

-fno-diagnostics-show-caret

-fno-diagnostics-show-line-numbers

-fdiagnostics—-color=never

-fdiagnostics-urls=never
-fdiagnostics-path-format=separate-events

In the future, if GCC changes the default appearance of its diagnostics, the
corresponding option to disable the new behavior will be added to this list.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

Chapter 3: GCC Command Options 79

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color [=WHEN]
-fno-diagnostics-color

Use color in diagnostics. WHEN is ‘never’, ‘always’, or ‘auto’. The default
depends on how the compiler has been configured, it can be any of the above
WHEN options or also ‘never’ if GCC_COLORS environment variable isn’t present
in the environment, and ‘auto’ otherwise. ‘auto’ makes GCC use color only
when the standard error is a terminal, and when not executing in an emacs shell.
The forms ‘-fdiagnostics-color’ and ‘-fno-diagnostics-color’ are aliases
for ‘-fdiagnostics-color=always’ and ‘-fdiagnostics-color=never’, re-
spectively.

The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.

The default GCC_COLORS is

error=01;31:warning=01;35:note=01;36:range1=32:range2=34:1locus=01:\
quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32

where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan, ‘32’
is green, ‘34’ is blue, ‘01’ is bold, and ‘31’ is red. Setting GCC_COLORS to the
empty string disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.
warning= SGR substring for warning: markers.
note= SGR substring for note: markers.

path= SGR substring for colorizing paths of control-flow events as printed
via ‘-fdiagnostics-path-format=’, such as the identifiers of indi-
vidual events and lines indicating interprocedural calls and returns.

rangel= SGR substring for first additional range.

range?2= SGR substring for second additional range.

80

Using the GNU Compiler Collection (GCC)

locus= SGR substring for location information, ‘file:line’ or
‘file:line:column’ etc.

quote= SGR substring for information printed within quotes.

fixit-insert=
SGR substring for fix-it hints suggesting text to be inserted or
replaced.

fixit-delete=
SGR substring for fix-it hints suggesting text to be deleted.

diff-filename=
SGR substring for filename headers within generated patches.

diff-hunk=
SGR substring for the starts of hunks within generated patches.

diff-delete=
SGR substring for deleted lines within generated patches.

diff-insert=
SGR substring for inserted lines within generated patches.

type-diff=
SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.

-fdiagnostics-urls [=WHEN]

Use escape sequences to embed URLs in diagnostics. For example, when
‘-fdiagnostics-show-option’ emits text showing the command-line option
controlling a diagnostic, embed a URL for documentation of that option.

WHEN is ‘never’, ‘always’, or ‘auto’. ‘auto’ makes GCC use URL escape
sequences only when the standard error is a terminal, and when not executing
in an emacs shell or any graphical terminal which is known to be incompatible
with this feature, see below.

The default depends on how the compiler has been configured. It can be any
of the above WHEN options.

GCC can also be configured (via the ‘--with-diagnostics-urls=auto-if-env’}}
configure-time option) so that the default is affected by environment variables.
Under such a configuration, GCC defaults to using ‘auto’ if either GCC_URLS
or TERM_URLS environment variables are present and non-empty in the
environment of the compiler, or ‘never’ if neither are.

However, even with ‘~-fdiagnostics-urls=always’ the behavior is dependent
on those environment variables: If GCC_URLS is set to empty or ‘no’, do not
embed URLs in diagnostics. If set to ‘st’, URLs use ST escape sequences. If
set to ‘bel’, the default, URLs use BEL escape sequences. Any other non-empty
value enables the feature. If GCC_URLS is not set, use TERM_URLS as a fallback.
Note: ST is an ANSI escape sequence, string terminator ‘ESC \’, BEL is an
ASCII character, CTRL-G that usually sounds like a beep.

Chapter 3: GCC Command Options 81

At this time GCC tries to detect also a few terminals that are known to not
implement the URL feature, and have bugs or at least had bugs in some versions
that are still in use, where the URL escapes are likely to misbehave, i.e. print
garbage on the screen. That list is currently xfce4-terminal, certain known to
be buggy gnome-terminal versions, the linux console, and mingw. This check
can be skipped with the ‘-fdiagnostics-urls=always’.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

-fno-diagnostics—-show-caret
By default, each diagnostic emitted includes the original source line and a caret
‘7 indicating the column. This option suppresses this information. The source
line is truncated to n characters, if the ‘~-fmessage-length=n’ option is given.
When the output is done to the terminal, the width is limited to the width
given by the COLUMNS environment variable or, if not set, to the terminal width.

—-fno-diagnostics—show-labels
By default, when printing source code (via ‘-fdiagnostics-show-caret’), di-
agnostics can label ranges of source code with pertinent information, such as
the types of expressions:
printf ("foo %s bar", long_i + long_j);

| |

char * long int
This option suppresses the printing of these labels (in the example above, the
vertical bars and the “char *” and “long int” text).

-fno-diagnostics-show-cwe
Diagnostic messages can optionally have an associated CWE identifier. GCC
itself only provides such metadata for some of the ‘~fanalyzer’ diagnostics.
GCC plugins may also provide diagnostics with such metadata. By default, if
this information is present, it will be printed with the diagnostic. This option
suppresses the printing of this metadata.

-fno-diagnostics—-show-line-numbers
By default, when printing source code (via ‘~fdiagnostics-show-caret’), a
left margin is printed, showing line numbers. This option suppresses this left
margin.

-fdiagnostics-minimum-margin-width=width
This option controls the minimum width of the left margin printed by
‘-fdiagnostics-show-line-numbers’. It defaults to 6.

-fdiagnostics-parseable-fixits
Emit fix-it hints in a machine-parseable format, suitable for consumption by
IDEs. For each fix-it, a line will be printed after the relevant diagnostic, starting
with the string “fix-it:”. For example:

https://cwe.mitre.org/index.html

82 Using the GNU Compiler Collection (GCC)

fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

The location is expressed as a half-open range, expressed as a count of bytes,
starting at byte 1 for the initial column. In the above example, bytes 3 through
20 of line 45 of “test.c” are to be replaced with the given string:

00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);

gtk_widget_show_all

The filename and replacement string escape backslash as “\\", tab as “\t”,
newline as “\n”, double quotes as “\"”, non-printable characters as octal (e.g.
vertical tab as “\013").

An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. “45:3-45:3”) indicates that the string is to be inserted at
the given position.

-fdiagnostics-generate-patch
Print fix-it hints to stderr in unified diff format, after any diagnostics are
printed. For example:

--- test.c
+++ test.c
@ -42,5 +42,5 @

void show_cb(GtkDialog *dlg)
{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
}

The diff may or may not be colorized, following the same rules as for diagnostics
(see ‘-fdiagnostics-color’).

-fdiagnostics-show-template-tree
In the C++ frontend, when printing diagnostics showing mismatching template
types, such as:
could not convert ’std::map<int, std::vector<double> >()’
from ’map<[...],vector<double>>’ to ’map<[...],vector<float>>
the ‘-fdiagnostics-show-template-tree’ flag enables printing a tree-like
structure showing the common and differing parts of the types, such as:
map<
[...]1,
vector<
[double != float]>>
The parts that differ are highlighted with color (“double” and “float” in this
case).

-fno-elide-type
By default when the C++ frontend prints diagnostics showing mismatching tem-
plate types, common parts of the types are printed as “[...]” to simplify the
error message. For example:

Chapter 3: GCC Command Options 83

could not convert ’std::map<int, std::vector<double> >()’
from ’map<[...],vector<double>>’ to ’map<[...],vector<float>>
Specifying the ‘~fno-elide-type’ flag suppresses that behavior. This flag also
affects the output of the ‘-fdiagnostics-show-template-tree’ flag.

-fdiagnostics-path-format=KIND
Specify how to print paths of control-flow events for diagnostics that have such
a path associated with them.

KIND is ‘none’, ‘separate-events’, or ‘inline-events’, the default.
‘none’ means to not print diagnostic paths.

‘separate-events’ means to print a separate “note” diagnostic for each event
within the diagnostic. For example:

test.c:29:5: error: passing NULL as argument 1 to ’PyList_Append’ which re-

quires a non-NULL parameter

test.c:25:10: note: (1) when ’PyList_New’ fails, returning NULL

test.c:27:3: note: (2) when ’i < count’

test.c:29:5: note: (3) when calling ’PyList_Append’, passing NULL from (1) as ar-Ji
gument 1

‘inline-events’ means to print the events “inline” within the source code.

This view attempts to consolidate the events into runs of sufficiently-close
events, printing them as labelled ranges within the source.

For example, the same events as above might be printed as:

’test’: events 1-3

| 25 | 1list = PyList_New(0);

| lF T

| I I

| | (1) when ’PyList_New’ fails, returning NULL

| 26 |

| 27 | for (i = 0; i < count; i++) {

| "

| I |

| | (2) when ’i < count’

| 28 | item = PyLong_FromLong(random()) ;

[29 | PyList_Append(list, item);

| | T s

| I |

| | (3) when calling ’PyList_Append’, passing NULL from (1) as ar-Jj
gument 1

|

Interprocedural control flow is shown by grouping the events by stack frame, and
using indentation to show how stack frames are nested, pushed, and popped.
For example:

’test’: events 1-2

1) entering ’test’
boxed_int *obj = make_boxed_int (i);

~ —

84 Using the GNU Compiler Collection (GCC)

| | (2) calling ’make_boxed_int’
l—-> ’make_boxed_int’: events 3-4

| 120 | {
|
(3) entering ’make_boxed_int’

boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));|}

|
|
|
|
121 |
|
|
|

|
|
|
|
|
|
|
I (4) calling ’wrapped_malloc’[l
|

+

—--> ’wrapped_malloc’: events 5-6

|
| 714
| (.
I I
| | (5) entering ’wrapped_malloc’
| 8 | return malloc (size);
| f T
| | |
| | (6) calling ’malloc’
[

- +

|

’test’: event 7
I
138 | free_boxed_int (obj);

-fdiagnostics-show-path-depths
This option provides additional information when printing control-flow paths
associated with a diagnostic.

If this is option is provided then the stack depth will be printed for each run of
events within ‘~-fdiagnostics-path-format=separate-events’.

This is intended for use by GCC developers and plugin developers when debug-
ging diagnostics that report interprocedural control flow.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-fdiagnostics-column-unit=UNIT
Select the units for the column number. This affects traditional diagnostics
(in the absence of ‘-fno-show-column’), as well as JSON format diagnostics if
requested.
The default UNIT, ‘display’, considers the number of display columns occupied
by each character. This may be larger than the number of bytes required to
encode the character, in the case of tab characters, or it may be smaller, in

Chapter 3: GCC Command Options 85

the case of multibyte characters. For example, the character “GREEK SMALL
LETTER PI (U+03C0)” occupies one display column, and its UTF-8 encoding
requires two bytes; the character “SLIGHTLY SMILING FACE (U+1F642)”
occupies two display columns, and its UTF-8 encoding requires four bytes.

Setting UNIT to ‘byte’ changes the column number to the raw byte count in
all cases, as was traditionally output by GCC prior to version 11.1.0.

-fdiagnostics—-column-origin=0RIGIN
Select the origin for column numbers, i.e. the column number assigned to the
first column. The default value of 1 corresponds to traditional GCC behavior
and to the GNU style guide. Some utilities may perform better with an origin
of 0; any non-negative value may be specified.

-fdiagnostics-escape-format=FORMAT
When GCC prints pertinent source lines for a diagnostic it normally attempts
to print the source bytes directly. However, some diagnostics relate to encoding
issues in the source file, such as malformed UTF-8, or issues with Unicode
normalization. These diagnostics are flagged so that GCC will escape bytes
that are not printable ASCII when printing their pertinent source lines.

This option controls how such bytes should be escaped.

The default FORMAT, ‘unicode’ displays Unicode characters that are not
printable ASCII in the form ‘<U+XXXX>’, and bytes that do not correspond
to a Unicode character validly-encoded in UTF-8-encoded will be displayed as
hexadecimal in the form ‘<XX>’.

For example, a source line containing the string ‘before’ followed by the Uni-
code character U+03C0 (“GREEK SMALL LETTER PI”, with UTF-8 encoding
0xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed
by the string ‘after’ will be printed for such a diagnostic as:
before<U+03CO><BF>after
Setting FORMAT to ‘bytes’ will display all non-printable-ASCII bytes in the
form ‘<XX>’, thus showing the underlying encoding of non-ASCII Unicode char-
acters. For the example above, the following will be printed:
before<CF><80><BF>after

-fdiagnostics-format=FORMAT
Select a different format for printing diagnostics. FORMAT is ‘text’ or ‘json’.
The default is ‘text’.

The ‘json’ format consists of a top-level JSON array containing JSON objects
representing the diagnostics.

The JSON is emitted as one line, without formatting; the examples below have
been formatted for clarity.

Diagnostics can have child diagnostics. For example, this error and note:

misleading-indentation.c:15:3: warning: this ’if’ clause does not

guard... [-Wmisleading-indentation]
15 | if (flag)
| ~n
misleading-indentation.c:17:5: note: ...this statement, but the latter

is misleadingly indented as if it were guarded by the ’if’

86 Using the GNU Compiler Collection (GCC)

17 | y = 2;
| >

might be printed in JSON form (after formatting) like this:

[
{
"kind": "warning",
"locations": [
{

"caret": {
"display-column": 3,
"byte-column": 3,

"column": 3,

"file": "misleading-indentation.c",
"line": 15

}J

"finish": {

"display-column": 4,
"byte-column": 4,
"column": 4,

"file": "misleading-indentation.c",
"line": 15
}
}
]5
"message": "this \u2018if\u2019 clause does not guard...",
"option": "-Wmisleading-indentation",

"option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-|j
Wmisleading-indentation",

"children": [

{
"kind": "note",
"locations": [
{
"caret": {

"display-column": 5,
"byte-column": 5,
"column": 5,

"file": "misleading-indentation.c",
"line": 17
}
}
1,
"escape-source": false,
"message": "...this statement, but the latter is ..."

}

]
"escape-source": false,
"column-origin": 1,

X
]

where the note is a child of the warning.

A diagnostic has a kind. If this is warning, then there is an option key
describing the command-line option controlling the warning.

A diagnostic can contain zero or more locations. Each location has an optional
label string and up to three positions within it: a caret position and optional

Chapter 3: GCC Command Options 87

start and finish positions. A position is described by a file name, a line
number, and three numbers indicating a column position:

e display-column counts display columns, accounting for tabs and multi-
byte characters.

e byte-column counts raw bytes.

e column is equal to one of the previous two, as dictated by the
‘~-fdiagnostics-column-unit’ option.

All three columns are relative to the origin specified by ‘-fdiagnostics-column-origin’|j
which is typically equal to 1 but may be set, for instance, to 0 for compatibility

with other utilities that number columns from 0. The column origin is recorded

in the JSON output in the column-origin tag. In the remaining examples

below, the extra column number outputs have been omitted for brevity.

For example, this error:

bad-binary-ops.c:64:23: error: invalid operands to binary + (have ’S’ {aka
’struct s’} and ’T’ {aka ’struct t’})
64 | return callee_4a () + callee_4b ();
| eemmesseeess a ssmesiaens

I

| | T {aka struct t}
| S {aka struct s}

has three locations. Its primary location is at the “+” token at column 23.

It has two secondary locations, describing the left and right-hand sides of the

expression, which have labels. It might be printed in JSON form as:

{
"children": [],
"kind": "error",
"locations": [
{
"caret": {
"column": 23, "file": "bad-binary-ops.c", "line": 64
}
},
{
"caret": {
"column": 10, "file": "bad-binary-ops.c", "line": 64
},
"finish": {
"column": 21, "file": "bad-binary-ops.c", "line": 64
}’
"label": "S {aka struct s}"
}!
{
"caret": {
"column": 25, "file": "bad-binary-ops.c", "line": 64
}’
"finish": {
"column": 36, "file": "bad-binary-ops.c", "line": 64
}’
"label": "T {aka struct t}"
}

],

"escape-source": false,

88 Using the GNU Compiler Collection (GCC)

"message": "invalid operands to binary + ..."

}

If a diagnostic contains fix-it hints, it has a fixits array, consisting of half-
open intervals, similar to the output of ‘~-fdiagnostics-parseable-fixits’.
For example, this diagnostic with a replacement fix-it hint:

demo.c:8:15: error: ’struct s’ has no member named ’colour’; did you

mean ’color’?
8 return ptr->colour;

might be printed in JSON form as:

{
"children": [],
"fixits": [
{
"next": {
"column": 21,
"file": "demo.c",
"line": 8
}’
"start": {
"column": 15,
"file": "demo.c",
"line": 8
}’
"string": "color"
¥
1,
"kind": "error",
"locations": [
{
"caret": {
"column": 15,
"file": "demo.c",
"line": 8
}5
"finish": {
"column": 20,
"file": "demo.c",
"line": 8
}
}
]’
"escape-source": false,
"message": "\u2018struct s\u2019 has no member named ..."
}

where the fix-it hint suggests replacing the text from start up to but not
including next with string’s value. Deletions are expressed via an empty
value for string, insertions by having start equal next.

If the diagnostic has a path of control-flow events associated with it, it has
a path array of objects representing the events. Each event object has a
description string, a location object, along with a function string and a
depth number for representing interprocedural paths. The function represents

Chapter 3: GCC Command Options 89

the current function at that event, and the depth represents the stack depth
relative to some baseline: the higher, the more frames are within the stack.

For example, the intraprocedural example shown for ‘~-fdiagnostics-path-format="J
might have this JSON for its path:

"path": [
{
"depth": O,
"description": "when ’PyList_New’ fails, returning NULL",
"function": "test",

"location": {
"column": 10,
"file": "test.c",
"line": 25

"depth": O,
"description": "when ’i < count’",
"function": "test",
"location": {
"column": 3,
"file": "test.c",
"line": 27

"depth": O,
"description": "when calling ’PyList_Append’, passing NULL from (1) as ar-|Jj
gument 1",
"function": "test",
"location": {
"column": 5,
"file": "test.c",
"line": 29

]

Diagnostics have a boolean attribute escape-source, hinting whether non-
ASCII bytes should be escaped when printing the pertinent lines of source code
(true for diagnostics involving source encoding issues).

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If nis 0

90 Using the GNU Compiler Collection (GCC)

(the default), there is no limit on the number of error messages produced. If
‘-Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended; for example ‘-Werror=switch’ turns the warnings controlled by
‘-Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘~Werror’ for specific warnings; for example ‘-Wno-error=switch’ makes
‘-Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and
‘~Wno-error=’ as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘-fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-W'foo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘~Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the de-
fault. For further language-specific options also refer to Section 3.5 [C++ Dialect Options],
page 51 and Section 3.6 [Objective-C and Objective-C++ Dialect Options|, page 74. Ad-
ditional warnings can be produced by enabling the static analyzer; See Section 3.9 [Static
Analyzer Options], page 145.

Some options, such as ‘-Wall’ and ‘-Wextra’, turn on other options, such as ‘-Wunused’,
which may turn on further options, such as ‘-Wunused-value’. The combined effect of
positive and negative forms is that more specific options have priority over less specific ones,
independently of their position in the command-line. For options of the same specificity,
the last one takes effect. Options enabled or disabled via pragmas (see Section 6.62.13
[Diagnostic Pragmas], page 876) take effect as if they appeared at the end of the command-
line.

When an unrecognized warning option is requested (e.g., ‘-Wunknown-warning’),
GCC emits a diagnostic stating that the option is not recognized. However, if the
‘-Wno-’ form is used, the behavior is slightly different: no diagnostic is produced for
‘-Wno-unknown-warning’ unless other diagnostics are being produced. This allows the
use of new ‘-Wno-’ options with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.

The effectiveness of some warnings depends on optimizations also being enabled. For
example ‘-Wsuggest-final-types’ is more effective with link-time optimization and some
instances of other warnings may not be issued at all unless optimization is enabled. While

Chapter 3: GCC Command Options 91

optimization in general improves the efficacy of control and data flow sensitive warnings, in
some cases it may also cause false positives.

-Wpedantic

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘~Wpedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. This alternate format can also be used to
disable warnings for non-ISO ‘__intN’ types, i.e. ‘__intN__’. Pedantic warn-

ings are also disabled in the expression that follows __extension__. However,

only system header files should use these escape routes; application programs
should avoid them. See Section 6.48 [Alternate Keywords|, page 708.

Some users try to use ‘-Wpedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-Wpedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’; there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘~Wpedantic’ are given where they are required by the base standard. (It
does not make sense for such warnings to be given only for features not in the
specified GNU C dialect, since by definition the GNU dialects of C include
all features the compiler supports with the given option, and there would be
nothing to warn about.)

-pedantic-errors
Give an error whenever the base standard (see ‘-Wpedantic’) requires a diag-
nostic, in some cases where there is undefined behavior at compile-time and in
some other cases that do not prevent compilation of programs that are valid
according to the standard. This is not equivalent to ‘~Werror=pedantic’, since
there are errors enabled by this option and not enabled by the latter and vice
versa.

¢

-Wall This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),

92

Using the GNU Compiler Collection (GCC)

even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options|, page 51 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 74.

‘-Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds=1 (only with ‘-02°)
-Warray-compare

-Warray-parameter=2 (C and Objective-C only)
-Wbool-compare

-Wbool-operation

-Wc++11-compat -Wc++14-compat
-Wcatch-value (C++ and Objective-C++ only)
-Wchar-subscripts

-Wcomment

-Wdangling-pointer=2
-Wduplicate-decl-specifier (C and Objective-C only)
-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wformat

-Wformat-overflow

-Wformat-truncation
-Wint-in-bool-context

-Wimplicit (C and Objective-C only)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Winit-self (only for C++)
-Wlogical-not-parentheses

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized

-Wmemset-elt-size
-Wmemset-transposed-args
-Wmisleading-indentation (only for C/C++)
-Wmismatched-dealloc
-Wmismatched-new-delete (only for C/C++)
-Wmissing-attributes

-Wmissing-braces (only for C/ObjC)
-Wmultistatement-macros

-Wnarrowing (only for C++)

-Wnonnull

-Wnonnull-compare

-Wopenmp-simd

-Wparentheses

-Wpessimizing-move (only for C++)
-Wpointer-sign

-Wrange-loop-construct (only for C++)
-Wreorder

-Wrestrict

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)
-Wsizeof-array-div

-Wsizeof-pointer-div
-Wsizeof-pointer-memaccess
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtautological-compare

-Wtrigraphs

Chapter 3: GCC Command Options 93

-Wextra

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable

-Wuse-after-free=3

-Wvla-parameter (C and Objective-C only)
-Wvolatile-register-var
-Wzero-length-bounds

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wcast-function-type

-Wdeprecated-copy (C++ only)

-Wempty-body

-Wenum-conversion (C only)

-Wignored-qualifiers

-Wimplicit-fallthrough=3

-Wmissing-field-initializers

-Wmissing-parameter-type (C only)

-Wold-style-declaration (C only)

-Woverride-init

-Wsign-compare (C only)

-Wstring-compare

-Wredundant-move (only for C++)

-Wtype-limits

-Wuninitialized

-Wshift-negative-value (in C++11 to C++17 and in C99 and newer)
-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)
-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘~Wextra’ also prints warning messages for the following cases:
e A pointer is compared against integer zero with <, <=, >, or >=.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) Ambiguous virtual bases.
e (C++ only) Subscripting an array that has been declared register.

e (C++ only) Taking the address of a variable that has been declared
register.

e (C++only) A base class is not initialized in the copy constructor of a derived
class.

94 Using the GNU Compiler Collection (GCC)

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn about code affected by ABI changes. This includes code that may not
be compatible with the vendor-neutral C++ ABI as well as the psABI for the
particular target.

Since G++ now defaults to updating the ABI with each major release, normally
‘-Wabi’ warns only about C++ ABI compatibility problems if there is a check
added later in a release series for an ABI issue discovered since the initial
release. ‘-Wabi’ warns about more things if an older ABI version is selected
(with ‘-fabi-version=n’).

‘~Wabi’ can also be used with an explicit version number to warn about C++
ABI compatibility with a particular ‘~-fabi-version’ level, e.g. ‘-Wabi=2’ to
warn about changes relative to ‘~fabi-version=2’.

If an explicit version number is provided and ‘-fabi-compat-version’ is
not specified, the version number from this option is used for compatibility
aliases. If no explicit version number is provided with this option, but
‘~fabi-compat-version’ is specified, that version number is used for C++
ABI warnings.

Although an effort has been made to warn about all such cases, there are
probably some cases that are not warned about, even though G++ is generating
incompatible code. There may also be cases where warnings are emitted even
though the code that is generated is compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

4

Known incompatibilities in ‘~fabi-version=2’ (which was the default from

GCC 3.4 to 4.9) include:

e A template with a non-type template parameter of reference type was
mangled incorrectly:
extern int N;

template <int &> struct S {};
void n (S<N>) {2}

This was fixed in ‘-fabi-version=3’.

e SIMD vector types declared using __attribute ((vector_size)) were
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling was changed in ‘-fabi-version=4’.

e __attribute ((const)) and noreturn were mangled as type qualifiers,

and decltype of a plain declaration was folded away.
These mangling issues were fixed in ‘~fabi-version=5’.

e Scoped enumerators passed as arguments to a variadic function are pro-
moted like unscoped enumerators, causing va_arg to complain. On most
targets this does not actually affect the parameter passing ABI, as there is
no way to pass an argument smaller than int.

Chapter 3: GCC Command Options 95

Also, the ABI changed the mangling of template argument packs, const_
cast, static_cast, prefix increment/decrement, and a class scope func-
tion used as a template argument.

These issues were corrected in ‘-fabi-version=6’.

e Lambdas in default argument scope were mangled incorrectly, and the ABI
changed the mangling of nullptr_t.

These issues were corrected in ‘-fabi-version=7".

e When mangling a function type with function-cv-qualifiers, the un-qualified
function type was incorrectly treated as a substitution candidate.

This was fixed in ‘~fabi-version=8’, the default for GCC 5.1.

e decltype(nullptr) incorrectly had an alignment of 1, leading to un-
aligned accesses. Note that this did not affect the ABI of a function with
a nullptr_t parameter, as parameters have a minimum alignment.

This was fixed in ‘-fabi-version=9’, the default for GCC 5.2.

e Target-specific attributes that affect the identity of a type, such as ia32
calling conventions on a function type (stdcall, regparm, etc.), did not
affect the mangled name, leading to name collisions when function pointers
were used as template arguments.

This was fixed in ‘-fabi-version=10’, the default for GCC 6.1.

This option also enables warnings about psABI-related changes. The known
psABI changes at this point include:

e For SysV/x86-64, unions with long double members are passed in memory
as specified in psABI. Prior to GCC 4.4, this was not the case. For example:

union U {
long double 1d;
int i;

};

union U is now always passed in memory.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

-Wno-coverage-mismatch
Warn if feedback profiles do not match when using the ‘-fprofile-use’ option.
If a source file is changed between compiling with ‘~fprofile-generate’ and
with ‘~fprofile-use’, the files with the profile feedback can fail to match the
source file and GCC cannot use the profile feedback information. By default,
this warning is enabled and is treated as an error. ‘-Wno-coverage-mismatch’
can be used to disable the warning or ‘~Wno-error=coverage-mismatch’ can
be used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

96

Using the GNU Compiler Collection (GCC)

-Wno-coverage-invalid-line—-number

Warn in case a function ends earlier than it begins due to an invalid linenum
macros. The warning is emitted only with ‘--coverage’ enabled.

By default, this warning is enabled and is treated as an error.
‘~Wno-coverage-invalid-line-number’ can be used to disable the warning
or ‘-Wno-error=coverage-invalid-line-number’ can be used to disable the

error.

-Wno-cpp (C, Objective-C, C++, Objective-C++ and Fortran only)

Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)

Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:

float area(float radius)

{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with double because the floating-
point literal is a double.

-Wduplicate-decl-specifier (C and Objective-C only)

-Wformat

Warn if a declaration has duplicate const, volatile, restrict or _Atomic
specifier. This warning is enabled by ‘-Wall’.

-Wformat=n

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.33 [Function Attributes],
page 552), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-~ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-Wpedantic’ is used with ‘-Wformat’, warnings are given about
format features not in the selected standard version (but not for strfmon for-

Chapter 3: GCC Command Options 97

mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 44.

-Wformat=1

-Wformat Option ‘-Wformat’ is equivalent to ‘-Wformat=1’, and
‘-Wno-format’ is equivalent to ‘-Wformat=0’. Since ‘-Wformat’
also checks for null format arguments for several functions,
‘-Wformat’ also implies ‘-Wnonnull’. Some aspects of this
level of format checking can be disabled by the options:
‘~-Wno-format-contains-nul’, ‘-Wno-format-extra-args’, and
‘~-Wno-format-zero-length’. ‘-Wformat’ is enabled by ‘-Wall’.

-Wformat=2
Enable ‘-Wformat’ plus additional format checks. Currently equiv-
alent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wno-format-contains-nul
If ‘~Wformat’ is specified, do not warn about format strings that contain NUL
bytes.

-Wno-format-extra-args
If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option sup-
presses the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wformat-overflow

-Wformat-overflow=level
Warn about calls to formatted input/output functions such as sprintf and
vsprintf that might overflow the destination buffer. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives.

-Wformat-overflow

-Wformat-overflow=1
Level 1 of ‘-Wformat-overflow’ enabled by ‘-Wformat’ employs a
conservative approach that warns only about calls that most likely
overflow the buffer. At this level, numeric arguments to format di-
rectives with unknown values are assumed to have the value of one,
and strings of unknown length to be empty. Numeric arguments
that are known to be bounded to a subrange of their type, or string
arguments whose output is bounded either by their directive’s pre-
cision or by a finite set of string literals, are assumed to take on the

98

Using the GNU Compiler Collection (GCC)

value within the range that results in the most bytes on output. For
example, the call to sprintf below is diagnosed because even with
both a and b equal to zero, the terminating NUL character (>\0”)
appended by the function to the destination buffer will be written
past its end. Increasing the size of the buffer by a single byte is
sufficient to avoid the warning, though it may not be sufficient to
avoid the overflow.

void f (int a, int b)
{

char buf [13];

sprintf (buf, "a = %i, b = %i\n", a, b);
}

-Wformat-overflow=2

Level 2 warns also about calls that might overflow the destination
buffer given an argument of sufficient length or magnitude. At level
2, unknown numeric arguments are assumed to have the minimum
representable value for signed types with a precision greater than 1,
and the maximum representable value otherwise. Unknown string
arguments whose length cannot be assumed to be bounded either
by the directive’s precision, or by a finite set of string literals they
may evaluate to, or the character array they may point to, are
assumed to be 1 character long.

At level 2, the call in the example above is again diagnosed, but this
time because with a equal to a 32-bit INT_MIN the first %i direc-
tive will write some of its digits beyond the end of the destination
buffer. To make the call safe regardless of the values of the two
variables, the size of the destination buffer must be increased to at
least 34 bytes. GCC includes the minimum size of the buffer in an
informational note following the warning.

An alternative to increasing the size of the destination buffer is to
constrain the range of formatted values. The maximum length of
string arguments can be bounded by specifying the precision in the
format directive. When numeric arguments of format directives can
be assumed to be bounded by less than the precision of their type,
choosing an appropriate length modifier to the format specifier will
reduce the required buffer size. For example, if a and b in the
example above can be assumed to be within the precision of the
short int type then using either the %hi format directive or casting
the argument to short reduces the maximum required size of the
buffer to 24 bytes.

void f (int a, int b)
{

char buf [23];

sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
}

Chapter 3: GCC Command Options 99

-Wno-format-zero-length
If ‘~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
ava_list.

-Wformat-security

If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%4n’. (This is
currently a subset of what ‘~Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat-signedness
If ‘~Wformat’ is specified, also warn if the format string requires an unsigned
argument and the argument is signed and vice versa.

-Wformat-truncation

-Wformat-truncation=level
Warn about calls to formatted input/output functions such as snprintf and
vsnprintf that might result in output truncation. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives. Except as noted
otherwise, the option uses the same logic ‘-Wformat-overflow’.

-Wformat-truncation

-Wformat-truncation=1
Level 1 of ‘-Wformat-truncation’ enabled by ‘-Wformat’ employs
a conservative approach that warns only about calls to bounded
functions whose return value is unused and that will most likely
result in output truncation.

-Wformat-truncation=2
Level 2 warns also about calls to bounded functions whose return
value is used and that might result in truncation given an argument
of sufficient length or magnitude.

-Wformat-y2k
If “~Wformat’ is specified, also warn about strftime formats that may yield
only a two-digit year.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

100 Using the GNU Compiler Collection (GCC)

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Wnonnull-compare
Warn when comparing an argument marked with the nonnull function at-
tribute against null inside the function.

‘-Wnonnull-compare’ is included in ‘-Wall’. It can be disabled with the
‘~Wno-nonnull-compare’ option.

-Wnull-dereference
Warn if the compiler detects paths that trigger erroneous or undefined be-
havior due to dereferencing a null pointer. This option is only active when
‘~-fdelete-null-pointer-checks’ is active, which is enabled by optimizations
in most targets. The precision of the warnings depends on the optimization
options used.

-Winfinite-recursion
Warn about infinitely recursive calls. The warning is effective at all optimization
levels but requires optimization in order to detect infinite recursion in calls
between two or more functions. ‘-Winfinite-recursion’isincluded in ‘-Wall’.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

For example, GCC warns about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int £()

{
int i = 1i;
return i;

}
This warning is enabled by ‘-Wall’ in C++.

-Wno-implicit-int (C and Objective-C only)
This option controls warnings when a declaration does not specify a type. This
warning is enabled by default in C99 and later dialects of C, and also by ‘-Wall’.

-Wno-implicit-function-declaration (C and Objective-C only)
This option controls warnings when a function is used before being declared.
This warning is enabled by default in C99 and later dialects of C, and also by
‘-Wall’. The warning is made into an error by ‘-pedantic-errors’.

-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.
-Wimplicit-fallthrough
‘~Wimplicit-fallthrough’ is the same as ‘-Wimplicit-fallthrough=3’ and
‘-Wno-implicit-fallthrough’ is the same as ‘-Wimplicit-fallthrough=0’.
-Wimplicit-fallthrough=n
Warn when a switch case falls through. For example:

Chapter 3: GCC Command Options 101

switch (cond)
{
case 1:
a=1;
break;
case 2:
a = 2;
case 3:
a = 3;
break;

}
This warning does not warn when the last statement of a case cannot fall
through, e.g. when there is a return statement or a call to function declared with
the noreturn attribute. ‘-Wimplicit-fallthrough=" also takes into account
control flow statements, such as ifs, and only warns when appropriate. E.g.

switch (cond)
{
case 1:
if (1 > 3) {
bar (5);
break;
} else if (i < 1) {
bar (0);
} else
return;
default:

.

Since there are occasions where a switch case fall through is desirable, GCC
provides an attribute, __attribute__ ((fallthrough)), that is to be used
along with a null statement to suppress this warning that would normally occur:

switch (cond)
{
case 1:
bar (0);
__attribute__ ((fallthrough));
default:

.

C++17 provides a standard way to suppress the ‘~Wimplicit-fallthrough’
warning using [[fallthrough]]; instead of the GNU attribute. In C++11 or
C++14 users can use [[gnu::fallthroughl];, which is a GNU extension. In-
stead of these attributes, it is also possible to add a fallthrough comment to
silence the warning. The whole body of the C or C++ style comment should
match the given regular expressions listed below. The option argument n spec-
ifies what kind of comments are accepted:

e ‘~Wimplicit-fallthrough=0’ disables the warning altogether.
e ‘—Wimplicit-fallthrough=1" matches .* regular expression, any com-
ment is used as fallthrough comment.

e ‘-Wimplicit-fallthrough=2’ case insensitively matches .*falls?[\t-
I*thr (ough |u) . * regular expression.

102 Using the GNU Compiler Collection (GCC)

e ‘~Wimplicit-fallthrough=3’ case sensitively matches one of the following
regular expressions:

e -fallthrough
e @fallthrough@
e lint -fallthrough[\t]x*

e [\t.!]*(ELSE,? |INTENTIONAL(LY)?)7

FALL(S | |-)?THR(OUGHIU) [\t.!1*(-["\n\rl*)?
e [\t.!]*(Else,? |Intentional(ly)?)?

Fall((s | I=-)[Tt] It)hr(oughl|u) [\t.!I*(-["\n\rl*)?
e [\t.!]1*([Eellse,? |[Iilntentional(ly)?)?

fall(s | |-)7thr(oughlu) [\t.!I*(-["\n\rl*)?

e ‘~Wimplicit-fallthrough=4’ case sensitively matches one of the following
regular expressions:

e -fallthrough

@fallthrough@

e lint -fallthrough[\t]*

e [\t]+FALLTHR(QUGH|U) [\t]x*

e ‘—Wimplicit-fallthrough=5’" doesn’t recognize any comments as
fallthrough comments, only attributes disable the warning.

The comment needs to be followed after optional whitespace and other com-
ments by case or default keywords or by a user label that precedes some case
or default label.

switch (cond)
{
case 1:
bar (0);
/* FALLTHRU */
default:

}
The ‘-Wimplicit-fallthrough=3’ warning is enabled by ‘-Wextra’.

-Wno-if-not-aligned (C, C++, Objective-C and Objective-C++ only)
Control if warnings triggered by the warn_if_not_aligned attribute should be
issued. These warnings are enabled by default.

-Wignored-qualifiers (C and C++ only)
Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by ‘-Wextra’.
-Wno-ignored-attributes (C and C++ only)

This option controls warnings when an attribute is ignored. This is different
from the ‘-Wattributes’ option in that it warns whenever the compiler decides

Chapter 3: GCC Command Options 103

-Wmain

to drop an attribute, not that the attribute is either unknown, used in a wrong
place, etc. This warning is enabled by default.

Warn if the type of main is suspicious. main should be a function with external
linkage, returning int, taking either zero arguments, two, or three arguments of
appropriate types. This warning is enabled by default in C++ and is enabled
by either ‘-Wall’ or ‘~Wpedantic’.

-Wmisleading-indentation (C and C++ only)

Warn when the indentation of the code does not reflect the block structure.
Specifically, a warning is issued for if, else, while, and for clauses with a
guarded statement that does not use braces, followed by an unguarded state-
ment with the same indentation.

In the following example, the call to “bar” is misleadingly indented as if it were
guarded by the “if” conditional.
if (some_condition ())
foo ();
bar (); /* Gotcha: this is not guarded by the "if". */
In the case of mixed tabs and spaces, the warning uses the ‘~ftabstop=’ option
to determine if the statements line up (defaulting to 8).

The warning is not issued for code involving multiline preprocessor logic such
as the following example.

if (flagh)
foo (0);
#if SOME_CONDITION_THAT_DOES_NOT_HOLD
if (flagB)
#endif
foo (1);

The warning is not issued after a #line directive, since this typically indicates
autogenerated code, and no assumptions can be made about the layout of the
file that the directive references.

This warning is enabled by ‘-Wall’ in C and C++.

-Wmissing-attributes

Warn when a declaration of a function is missing one or more attributes that
a related function is declared with and whose absence may adversely affect the
correctness or efficiency of generated code. For example, the warning is issued
for declarations of aliases that use attributes to specify less restrictive require-
ments than those of their targets. This typically represents a potential opti-
mization opportunity. By contrast, the ‘-Wattribute-alias=2’ option controls
warnings issued when the alias is more restrictive than the target, which could
lead to incorrect code generation. Attributes considered include alloc_align,
alloc_size, cold, const, hot, leaf, malloc, nonnull, noreturn, nothrow,
pure, returns_nonnull, and returns_twice.

In C++, the warning is issued when an explicit specialization of a primary
template declared with attribute alloc_align, alloc_size, assume_aligned,
format, format_arg, malloc, or nonnull is declared without it. Attributes
deprecated, error, and warning suppress the warning. (see Section 6.33
[Function Attributes], page 552).

104

Using the GNU Compiler Collection (GCC)

You can use the copy attribute to apply the same set of attributes to a
declaration as that on another declaration without explicitly enumerating
the attributes. This attribute can be applied to declarations of functions
(see Section 6.33.1 [Common Function Attributes|, page 553), variables
(see Section 6.34.1 [Common Variable Attributes|, page 618), or types (see

)

Section 6.35.1 [Common Type Attributes], page 633).
‘-Wmissing-attributes’ is enabled by ‘-Wall’.

For example, since the declaration of the primary function template below
makes use of both attribute malloc and alloc_size the declaration of the
explicit specialization of the template is diagnosed because it is missing one of
the attributes.

template <class T>
T*x __attribute__ ((malloc, alloc_size (1)))
allocate (size_t);

template <>
void* __attribute__ ((malloc)) // missing alloc_size
allocate<void> (size_t);

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for a is not fully bracketed, but that for b is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1, 2, 3}
{{o, 1} {2,3}1}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C, Objective-C++ and Fortran only)

Warn if a user-supplied include directory does not exist. This opions is dis-
abled by default for C, C++, Objective-C and Objective-C++. For Fortran, it is
partially enabled by default by warning for -I and -J, only.

-Wno-missing-profile

This option controls warnings if feedback profiles are missing when using the
‘~fprofile-use’ option. This option diagnoses those cases where a new func-
tion or a new file is added between compiling with ‘~fprofile-generate’ and
with ‘~fprofile-use’, without regenerating the profiles. In these cases, the
profile feedback data files do not contain any profile feedback information for
the newly added function or file respectively. Also, in the case when profile
count data (.gcda) files are removed, GCC cannot use any profile feedback in-
formation. In all these cases, warnings are issued to inform you that a profile
generation step is due. Ignoring the warning can result in poorly optimized
code. ‘-Wno-missing-profile’ can be used to disable the warning, but this is
not recommended and should be done only when non-existent profile data is
justified.

-Wmismatched-dealloc

Warn for calls to deallocation functions with pointer arguments returned from
from allocations functions for which the former isn’t a suitable deallocator.
A pair of functions can be associated as matching allocators and deallocators

Chapter 3: GCC Command Options 105

by use of attribute malloc. Unless disabled by the ‘~fno-builtin’ option
the standard functions calloc, malloc, realloc, and free, as well as the
corresponding forms of C++ operator new and operator delete are implicitly
associated as matching allocators and deallocators. In the following example
mydealloc is the deallocator for pointers returned from myalloc.

void mydealloc (voidx);

__attribute__ ((malloc (mydealloc, 1))) voidx*
myalloc (size_t);

void f (void)

{
void *p = myalloc (32);
// ...use p...
free (p); // warning: not a matching deallocator for myalloc
mydealloc (p); // ok

}

In C++, the related option ‘~Wmismatched-new-delete’ diagnoses mismatches

involving either operator new or operator delete.

Option ‘-Wmismatched-dealloc’ is included in ‘-Wall’.

-Wmultistatement-macros
Warn about unsafe multiple statement macros that appear to be guarded by a
clause such as if, else, for, switch, or while, in which only the first statement
is actually guarded after the macro is expanded.

For example:
#define DOIT x++; y++
if (c)
DOIT;
will increment y unconditionally, not just when ¢ holds. The can usually be
fixed by wrapping the macro in a do-while loop:

#define DOIT do { x++; y++; } while (0)
if (c)
DOIT;

This warning is enabled by ‘-Wall’ in C and C++.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn if a comparison like x<=y<=z appears; this is equivalent to (x<=y 7 1
: 0) <= z, which is a different interpretation from that of ordinary mathemat-
ical notation.

Also warn for dangerous uses of the GNU extension to 7: with omitted middle
operand. When the condition in the ?7: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

For C++ this also warns for some cases of unnecessary parentheses in declara-
tions, which can indicate an attempt at a function call instead of a declaration:

106

Using the GNU Compiler Collection (GCC)

{
// Declares a local variable called mymutex.
std::unique_lock<std::mutex> (mymutex);
// User meant std::unique_lock<std::mutex> lock (mymutex);
}

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The C++17 standard will define the order of evaluation of operands in more
cases: in particular it requires that the right-hand side of an assignment be
evaluated before the left-hand side, so the above examples are no longer unde-
fined. But this option will still warn about them, to help people avoid writing
code that is undefined in C and earlier revisions of C++.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at https://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

https://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 107

-Wno-return-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-type
Warn whenever a function is defined with a return type that defaults to int.
Also warn about any return statement with no return value in a function whose
return type is not void (falling off the end of the function body is considered
returning without a value).

For C only, warn about a return statement with an expression in a function
whose return type is void, unless the expression type is also void. As a GNU
extension, the latter case is accepted without a warning unless ‘-Wpedantic’ is
used. Attempting to use the return value of a non-void function other than
main that flows off the end by reaching the closing curly brace that terminates
the function is undefined.

Unlike in C, in C++, flowing off the end of a non-void function other than main
results in undefined behavior even when the value of the function is not used.

This warning is enabled by default in C++ and by ‘~Wall’ otherwise.

-Wno-shift-count-negative
Controls warnings if a shift count is negative. This warning is enabled by
default.

-Wno-shift-count-overflow
Controls warnings if a shift count is greater than or equal to the bit width of
the type. This warning is enabled by default.

-Wshift-negative-value
Warn if left shifting a negative value. This warning is enabled by ‘-Wextra’ in
C99 (and newer) and C++11 to C++17 modes.

-Wno-shift-overflow
-Wshift-overflow=n
These options control warnings about left shift overflows.

-Wshift-overflow=1
This is the warning level of ‘-Wshift-overflow’ and is enabled by
default in C99 and C++11 modes (and newer). This warning level
does not warn about left-shifting 1 into the sign bit. (However, in
C, such an overflow is still rejected in contexts where an integer
constant expression is required.) No warning is emitted in C++20
mode (and newer), as signed left shifts always wrap.

-Wshift-overflow=2
This warning level also warns about left-shifting 1 into the sign bit,
unless C++14 mode (or newer) is active.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration

108 Using the GNU Compiler Collection (GCC)

range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

-Wno-switch-bool
Do not warn when a switch statement has an index of boolean type and the
case values are outside the range of a boolean type. It is possible to suppress
this warning by casting the controlling expression to a type other than bool.
For example:

switch ((int) (a == 4))
{

This warning is enabled by default for C and C++ programs.

-Wno-switch-outside-range
This option controls warnings when a switch case has a value that is outside
of its respective type range. This warning is enabled by default for C and C++
programs.

-Wno-switch—unreachable
Do not warn when a switch statement contains statements between the con-
trolling expression and the first case label, which will never be executed. For
example:

switch (cond)
{
i = 15;
case 5:
}

‘~Wswitch-unreachable’ does not warn if the statement between the control-
ling expression and the first case label is just a declaration:
switch (cond)
{
int i;
é;se 5:
i = b;
}
This warning is enabled by default for C and C++ programs.

Chapter 3: GCC Command Options 109

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in

functions are used. These functions changed semantics in GCC 4.4.

-Wtrivial-auto-var-init
Warn when -ftrivial-auto-var-init cannot initialize the automatic vari-
able. A common situation is an automatic variable that is declared between
the controlling expression and the first case label of a switch statement.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

This warning is also enabled by ‘-Wunused’ together with ‘-Wextra’.

-Wunused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.

To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

This warning is also enabled by ‘-Wunused’, which is enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘-Wall’.
To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used. This warning is
enabled by ‘-Wall’.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.33 [Function Attributes|, page 552) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local or static variable is unused aside from its declaration.
This option implies ‘-Wunused-const-variable=1’ for C, but not for C++. This
warning is enabled by ‘-Wall’.

110

Using the GNU Compiler Collection (GCC)

To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

-Wunused-const-variable
-Wunused-const-variable=n

Warn whenever a constant static variable is unused aside from its declaration.
‘~Wunused-const-variable=1’ is enabled by ‘-Wunused-variable’ for C, but
not for C++. In C this declares variable storage, but in C++ this is not an error
since const variables take the place of #defines.

To suppress this warning use the unused attribute (see Section 6.34 [Variable
Attributes|, page 618).

-Wunused-const-variable=1
This is the warning level that is enabled by ‘-Wunused-variable’
for C. It warns only about unused static const variables defined
in the main compilation unit, but not about static const variables
declared in any header included.

-Wunused-const-variable=2
This warning level also warns for unused constant static variables
in headers (excluding system headers). This is the warning level
of ‘~Wunused-const-variable’ and must be explicitly requested
since in C++ this isn’t an error and in C it might be harder to clean
up all headers included.

-Wunused-value

Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to void. This includes an
expression-statement or the left-hand side of a comma expression that contains
no side effects. For example, an expression such as x[i,j] causes a warning,
while x[(void)i, j] does not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘~Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘~Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized

Warn if an object with automatic or allocated storage duration is used without
having been initialized. In C++, also warn if a non-static reference or non-static
const member appears in a class without constructors.

In addition, passing a pointer (or in C++, a reference) to an uninitialized object
to a const-qualified argument of a built-in function known to read the object
is also diagnosed by this warning. (‘-Wmaybe-uninitialized’ is issued for
ordinary functions.)

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘~-Winit-self’ option.

These warnings occur for individual uninitialized elements of structure, union
or array variables as well as for variables that are uninitialized as a whole.

Chapter 3: GCC Command Options 111

They do not occur for variables or elements declared volatile. Because these
warnings depend on optimization, the exact variables or elements for which
there are warnings depend on the precise optimization options and version of
GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

In C++, this warning also warns about using uninitialized objects in member-
initializer-lists. For example, GCC warns about b being uninitialized in the
following snippet:

struct A {

int a;

int b;

AQO : a(®) {1}
};

-Wno-invalid-memory-model

This option controls warnings for invocations of Section 6.55 [-_atomic Builtins],
page 717, Section 6.54 [__sync Builtins], page 715, and the C11 atomic generic
functions with a memory consistency argument that is either invalid for the
operation or outside the range of values of the memory_order enumeration. For
example, since the __atomic_store and __atomic_store_n built-ins are only
defined for the relaxed, release, and sequentially consistent memory orders the
following code is diagnosed:

void store (int *i)

{

__atomic_store_n (i, O, memory_order_consume);

}

‘~-Winvalid-memory-model’ is enabled by default.

-Wmaybe-uninitialized
For an object with automatic or allocated storage duration, if there exists a
path from the function entry to a use of the object that is initialized, but there
exist some other paths for which the object is not initialized, the compiler emits
a warning if it cannot prove the uninitialized paths are not executed at run time.

In addition, passing a pointer (or in C++, a reference) to an uninitialized ob-
ject to a const-qualified function argument is also diagnosed by this warning.
(‘-Wuninitialized’ is issued for built-in functions known to read the object.)
Annotating the function with attribute access (none) indicates that the argu-
ment isn’t used to access the object and avoids the warning (see Section 6.33.1
[Common Function Attributes], page 553).

These warnings are only possible in optimizing compilation, because otherwise
GCC does not keep track of the state of variables.

These warnings are made optional because GCC may not be able to determine
when the code is correct in spite of appearing to have an error. Here is one
example of how this can happen:

112 Using the GNU Compiler Collection (GCC)

{
int x;
switch (y)
{
case 1: x
break;
case 2: x = 4;
break;
case 3: X
}
foo (x);
¥

]
e

1]
(9]

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, you need to provide a default case with
assert(0) or similar code.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal handler could call it at any
point in the code. As a result, you may get a warning even when there is in fact
no problem because longjmp cannot in fact be called at the place that would
cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.33 [Function Attributes],
page H52.

This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings are even issued for unknown
pragmas in system header files. This is not the case if the warnings are only
enabled by the ‘-Wall’ command-line option.

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wno-prio-ctor-dtor
Do not warn if a priority from 0 to 100 is used for constructor or destructor.
The use of constructor and destructor attributes allow you to assign a priority
to the constructor/destructor to control its order of execution before main is
called or after it returns. The priority values must be greater than 100 as the
compiler reserves priority values between 0—-100 for the implementation.

-Wstrict-aliasing
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘-Wstrict-aliasing=3’

Chapter 3: GCC Command Options 113

-Wstrict-aliasing=n

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for op-
timization. Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way ‘-0’ works.
‘-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=3".

Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but ‘~fstrict-aliasing’ still breaks the code, as it has very
few false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when signed overflow is undefined. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop requires, in
particular when determining whether a loop will be executed at all.

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid.
For example the compiler simplifies x + 1 > x to 1. This level of
‘~Wstrict-overflow’ is enabled by ‘-Wall’; higher levels are not,
and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to a
constant. For example: abs (x) >= 0. This can only be simplified
when signed integer overflow is undefined, because abs (INT_MIN)

114 Using the GNU Compiler Collection (GCC)

overflows to INT_MIN, which is less than zero. ‘~-Wstrict-overflow’
(with no level) is the same as ‘~Wstrict-overflow=2’.

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 is simplified to x > 0.

-Wstrict-overflow=4
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 is simplified to x * 2.

-Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude
of a constant involved in a comparison. For example: x + 2 > y is
simplified to x + 1 >= y. This is reported only at the highest warn-
ing level because this simplification applies to many comparisons,
so this warning level gives a very large number of false positives.

-Wstring-compare
Warn for calls to strcmp and strncmp whose result is determined to be either
zero or non-zero in tests for such equality owing to the length of one argument
being greater than the size of the array the other argument is stored in (or the
bound in the case of strncmp). Such calls could be mistakes. For example,
the call to strcmp below is diagnosed because its result is necessarily non-zero
irrespective of the contents of the array a.

extern char al4];
void f (char *d)
{
strcpy (d, "string");

if (0 == strcmp (a, d)) // cannot be true
puts ("a and d are the same");

¥
‘-Wstring-compare’ is enabled by ‘-Wextra’.

-Wno-stringop-overflow

-Wstringop-overflow

-Wstringop-overflow=type
Warn for calls to string manipulation functions such as memcpy and strcpy
that are determined to overflow the destination buffer. The optional argument
is one greater than the type of Object Size Checking to perform to determine
the size of the destination. See Section 6.58 [Object Size Checking], page 724.
The argument is meaningful only for functions that operate on character arrays
but not for raw memory functions like memcpy which always make use of Object
Size type-0. The option also warns for calls that specify a size in excess of the
largest possible object or at most SIZE_MAX / 2 bytes. The option produces
the best results with optimization enabled but can detect a small subset of
simple buffer overflows even without optimization in calls to the GCC built-in
functions like __builtin_memcpy that correspond to the standard functions. In
any case, the option warns about just a subset of buffer overflows detected by
the corresponding overflow checking built-ins. For example, the option issues a

Chapter 3: GCC Command Options 115

warning for the strcpy call below because it copies at least 5 characters (the
string "blue" including the terminating NUL) into the buffer of size 4.

enum Color { blue, purple, yellow };
const charx f (enum Color clr)

{

}

static char buf [4];
const char *str;
switch (clr)

{

}

case blue: str = "blue"; break;
case purple: str
case yellow: str

"purple"; break;
"yellow"; break;

return strcpy (buf, str); // warning here

Option ‘-Wstringop-overflow=2’ is enabled by default.

-Wstringop-overflow
-Wstringop-overflow=1

The ‘-Wstringop-overflow=1" option uses type-zero Object Size
Checking to determine the sizes of destination objects. At this set-
ting the option does not warn for writes past the end of subobjects
of larger objects accessed by pointers unless the size of the largest
surrounding object is known. When the destination may be one
of several objects it is assumed to be the largest one of them. On
Linux systems, when optimization is enabled at this setting the op-
tion warns for the same code as when the _FORTIFY_SOURCE macro
is defined to a non-zero value.

-Wstringop-overflow=2

The ‘-Wstringop-overflow=2’ option uses type-one Object Size
Checking to determine the sizes of destination objects. At this set-
ting the option warns about overflows when writing to members of
the largest complete objects whose exact size is known. However, it
does not warn for excessive writes to the same members of unknown
objects referenced by pointers since they may point to arrays con-
taining unknown numbers of elements. This is the default setting
of the option.

-Wstringop-overflow=3

The ‘-Wstringop-overflow=3’ option uses type-two Object Size
Checking to determine the sizes of destination objects. At this
setting the option warns about overflowing the smallest object or
data member. This is the most restrictive setting of the option that
may result in warnings for safe code.

-Wstringop-overflow=4

The ‘-Wstringop-overflow=4’ option uses type-three Object Size
Checking to determine the sizes of destination objects. At this
setting the option warns about overflowing any data members, and
when the destination is one of several objects it uses the size of the

116 Using the GNU Compiler Collection (GCC)

largest of them to decide whether to issue a warning. Similarly to
‘~Wstringop-overflow=3’ this setting of the option may result in
warnings for benign code.

-Wno-stringop-overread
Warn for calls to string manipulation functions such as memchr, or strcpy that
are determined to read past the end of the source sequence.

Option ‘-Wstringop-overread’ is enabled by default.

-Wno-stringop-truncation
Do not warn for calls to bounded string manipulation functions such as strncat,
strncpy, and stpncpy that may either truncate the copied string or leave the
destination unchanged.

In the following example, the call to strncat specifies a bound that is less
than the length of the source string. As a result, the copy of the source will
be truncated and so the call is diagnosed. To avoid the warning use bufsize -
strlen (buf) - 1) as the bound.

void append (char *buf, size_t bufsize)

{
strncat (buf, ".txt", 3);
}

As another example, the following call to strncpy results in copying to d just
the characters preceding the terminating NUL, without appending the NUL
to the end. Assuming the result of strncpy is necessarily a NUL-terminated
string is a common mistake, and so the call is diagnosed. To avoid the warning
when the result is not expected to be NUL-terminated, call memcpy instead.
void copy (char *d, const char *s)
{

strncpy (d, s, strlen (s));
}

In the following example, the call to strncpy specifies the size of the destination
buffer as the bound. If the length of the source string is equal to or greater
than this size the result of the copy will not be NUL-terminated. Therefore,
the call is also diagnosed. To avoid the warning, specify sizeof buf - 1 as the
bound and set the last element of the buffer to NUL.

void copy (const char *s)

{
char buf[80];
strncpy (buf, s, sizeof buf);

.

In situations where a character array is intended to store a sequence of bytes
with no terminating NUL such an array may be annotated with attribute
nonstring to avoid this warning. Such arrays, however, are not suitable
arguments to functions that expect NUL-terminated strings. To help detect
accidental misuses of such arrays GCC issues warnings unless it can prove that
the use is safe. See Section 6.34.1 [Common Variable Attributes|, page 618.

Chapter 3: GCC Command Options 117

-Wsuggest-attribute=[pure|const |noreturn|format|cold|malloc]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure
-Wsuggest-attribute=const
-Wsuggest-attribute=noreturn
-Wmissing-noreturn
-Wsuggest-attribute=malloc

Warn about functions that might be candidates for attributes pure,
const or noreturn or malloc. The compiler only warns for func-
tions visible in other compilation units or (in the case of pure and
const) if it cannot prove that the function returns normally. A
function returns normally if it doesn’t contain an infinite loop or
return abnormally by throwing, calling abort or trapping. This
analysis requires option ‘-fipa-pure-const’, which is enabled by
default at ‘-0’ and higher. Higher optimization levels improve the
accuracy of the analysis.

-Wsuggest-attribute=format
-Wmissing-format-attribute

Warn about function pointers that might be candidates for format
attributes. Note these are only possible candidates, not absolute
ones. GCC guesses that function pointers with format attributes
that are used in assignment, initialization, parameter passing or
return statements should have a corresponding format attribute
in the resulting type. lLe. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a format
attribute to avoid the warning.

GCC also warns about function definitions that might be candi-
dates for format attributes. Again, these are only possible candi-
dates. GCC guesses that format attributes might be appropriate
for any function that calls a function like vprintf or vscanf, but
this might not always be the case, and some functions for which
format attributes are appropriate may not be detected.

-Wsuggest-attribute=cold

-Walloc-zero

Warn about functions that might be candidates for cold attribute.
This is based on static detection and generally only warns about
functions which always leads to a call to another cold function such
as wrappers of C++ throw or fatal error reporting functions leading
to abort.

Warn about calls to allocation functions decorated with attribute alloc_size
that specify zero bytes, including those to the built-in forms of the functions
aligned_alloc, alloca, calloc, malloc, and realloc. Because the behavior
of these functions when called with a zero size differs among implementations

118 Using the GNU Compiler Collection (GCC)

(and in the case of realloc has been deprecated) relying on it may result in
subtle portability bugs and should be avoided.

-Walloc-size-larger-than=byte-size

Warn about calls to functions decorated with attribute alloc_size that
attempt to allocate objects larger than the specified number of bytes,
or where the result of the size computation in an integer type with
infinite precision would exceed the value of ‘PTRDIFF_MAX’ on the target.
‘-Walloc-size-larger—-than=""PTRDIFF_MAX’ is enabled by default. Warnings
controlled by the option can be disabled either by specifying byte-size of
‘SIZE_MAX’ or more or by ‘-Wno-alloc-size-larger-than’. See Section 6.33
[Function Attributes], page 552.

-Wno-alloc-size-larger-than
Disable ‘-Walloc-size-larger-than=" warnings. The option is equivalent to
‘-Walloc-size-larger—than=""SIZE_MAX’ or larger.

i

-Walloca This option warns on all uses of alloca in the source.

-Walloca-larger-than=byte-size
This option warns on calls to alloca with an integer argument whose value
is either zero, or that is not bounded by a controlling predicate that limits its
value to at most byte-size. It also warns for calls to alloca where the bound
value is unknown. Arguments of non-integer types are considered unbounded
even if they appear to be constrained to the expected range.

For example, a bounded case of alloca could be:

void func (size_t n)
{
void *p;
if (n <= 1000)
p = alloca (n);
else
p = malloc (n);
f (p);
}
In the above example, passing -Walloca-larger-than=1000 would not issue a
warning because the call to alloca is known to be at most 1000 bytes. However,

if -Walloca-larger-than=500 were passed, the compiler would emit a warning.

Unbounded uses, on the other hand, are uses of alloca with no controlling
predicate constraining its integer argument. For example:

void func ()
{
void *p = alloca (n);
f ()
}
If -Walloca-larger-than=500 were passed, the above would trigger a warning,

but this time because of the lack of bounds checking.

Note, that even seemingly correct code involving signed integers could cause a
warning:

void func (signed int n)

{

Chapter 3: GCC Command Options 119

if (n < 500)
{

p = alloca (n);
f (p)

3

(p
}
}
In the above example, n could be negative, causing a larger than expected
argument to be implicitly cast into the alloca call.

This option also warns when alloca is used in a loop.

‘-Walloca-larger-than=""PTRDIFF_MAX’ is enabled by default but is usually
only effective when ‘-ftree-vrp’ is active (default for ‘-02’ and above).

See also ‘-Wvla-larger-than="‘byte-size’.

-Wno-alloca-larger-than
Disable ‘-Walloca-larger-than=" warnings. The option is equivalent to
‘-Walloca-larger-than="*SIZE_MAX’ or larger.

-Warith-conversion
Do warn about implicit conversions from arithmetic operations even when
conversion of the operands to the same type cannot change their values.
This affects warnings from ‘-Wconversion’, ‘-Wfloat-conversion’, and
‘~-Wsign-conversion’.

void f (char ¢, int i)

{
c
c

}

c + i; // warns with ‘-Wconversion’
¢ + 1; // only warns with ‘-Warith-conversion’

-Warray-bounds

-Warray-bounds=n
Warn about out of bounds subscripts or offsets into arrays. This warning is
enabled by ‘-Wall’. It is more effective when ‘-ftree-vrp’ is active (the de-
fault for ‘-02’ and above) but a subset of instances are issued even without
optimization.

-Warray-bounds=1
This is the default warning level of ‘~Warray-bounds’ and is enabled
by ‘-Wall’; higher levels are not, and must be explicitly requested.

-Warray-bounds=2
This warning level also warns about out of bounds accesses to trail-
ing struct members of one-element array types (see Section 6.18
[Zero Length|, page 544) and about the intermediate results of
pointer arithmetic that may yield out of bounds values. This warn-
ing level may give a larger number of false positives and is deacti-
vated by default.

-Warray-compare
Warn about equality and relational comparisons between two operands of array
type. This comparison was deprecated in C++20. For example:
int arri[5];

120 Using the GNU Compiler Collection (GCC)

int arr2[5];
bool same = arrl == arr2;

‘-Warray-compare’ is enabled by ‘-Wall’.

-Warray-parameter

-Warray-parameter=n
Warn about redeclarations of functions involving arguments of array or pointer
types of inconsistent kinds or forms, and enable the detection of out-of-bounds
accesses to such parameters by warnings such as ‘-Warray-bounds’.

If the first function declaration uses the array form the bound specified in
the array is assumed to be the minimum number of elements expected to be
provided in calls to the function and the maximum number of elements ac-
cessed by it. Failing to provide arguments of sufficient size or accessing more
than the maximum number of elements may be diagnosed by warnings such as
‘~Warray-bounds’. At level 1 the warning diagnoses inconsistencies involving
array parameters declared using the T[static N] form.

For example, the warning triggers for the following redeclarations because the
first one allows an array of any size to be passed to £ while the second one with
the keyword static specifies that the array argument must have at least four
elements.

void f (int[static 4]);
void £ (int[]); // warning (inconsistent array form)

void g (void)
{
int *p = (int *)malloc (4);
£ () // warning (array too small)

.

At level 2 the warning also triggers for redeclarations involving any other in-
consistency in array or pointer argument forms denoting array sizes. Pointers
and arrays of unspecified bound are considered equivalent and do not trigger a

warning.
void g (intx);
void g (int[]1); // no warning
void g (int[8]); // warning (inconsistent array bound)

‘-Warray-parameter=2’ is included in ‘-Wall’. The ‘-Wvla-parameter’ option
triggers warnings for similar inconsistencies involving Variable Length Array
arguments.

-Wattribute-alias=n

-Wno-attribute-alias
Warn about declarations using the alias and similar attributes whose target is
incompatible with the type of the alias. See Section 6.33 [Declaring Attributes
of Functions|, page 552.

-Wattribute-alias=1
The default warning level of the ‘~-Wattribute-alias’ option diag-
noses incompatibilities between the type of the alias declaration and

Chapter 3: GCC Command Options 121

that of its target. Such incompatibilities are typically indicative of
bugs.

-Wattribute-alias=2

At this level ‘~Wattribute-alias’ also diagnoses cases where the
attributes of the alias declaration are more restrictive than the at-
tributes applied to its target. These mismatches can potentially
result in incorrect code generation. In other cases they may be be-
nign and could be resolved simply by adding the missing attribute
to the target. For comparison, see the ‘-Wmissing-attributes’
option, which controls diagnostics when the alias declaration is less
restrictive than the target, rather than more restrictive.

Attributes considered include alloc_align, alloc_size, cold,
const, hot, leaf, malloc, nonnull, noreturn, nothrow, pure,
returns_nonnull, and returns_twice.

‘~Wattribute-alias’ is equivalent to ‘-Wattribute-alias=1’. This is the de-
fault. You can disable these warnings with either ‘-Wno-attribute-alias’ or
‘~Wattribute-alias=0’.

-Wbidi-chars=[none|unpaired|any|ucn]
Warn about possibly misleading UTF-8 bidirectional control characters in com-
ments, string literals, character constants, and identifiers. Such characters can
change left-to-right writing direction into right-to-left (and vice versa), which
can cause confusion between the logical order and visual order. This may be
dangerous; for instance, it may seem that a piece of code is not commented out,
whereas it in fact is.

There are three levels of warning supported by GCC. The default is
‘-Wbidi-chars=unpaired’, which warns about improperly terminated bidi
contexts. ‘-Wbidi-chars=none’ turns the warning off. ‘-Wbidi-chars=any’
warns about any use of bidirectional control characters.

By default, this warning does not warn about UCNs. It is, however,
possible to turn on such checking by using ‘-Wbidi-chars=unpaired,ucn’ or
‘~Wbidi-chars=any,ucn’. Using ‘-Wbidi-chars=ucn’ is valid, and is equiv-
alent to ‘-Wbidi-chars=unpaired,ucn’, if no previous ‘-Wbidi-chars=any’
was specified.

-Wbool-compare
Warn about boolean expression compared with an integer value different from
true/false. For instance, the following comparison is always false:
int n = 5;
if.((n >1) =2) { ...}
This warning is enabled by ‘-Wall’.
-Wbool-operation
Warn about suspicious operations on expressions of a boolean type. For in-

stance, bitwise negation of a boolean is very likely a bug in the program. For
C, this warning also warns about incrementing or decrementing a boolean,

122 Using the GNU Compiler Collection (GCC)

which rarely makes sense. (In C++, decrementing a boolean is always invalid.
Incrementing a boolean is invalid in C++17, and deprecated otherwise.)

This warning is enabled by ‘-Wall’.

-Wduplicated-branches
Warn when an if-else has identical branches. This warning detects cases like
if (p !'= NULL)
return O;
else
return O;
It doesn’t warn when both branches contain just a null statement. This warning
also warn for conditional operators:

int i = x 7 *xp : *p;

-Wduplicated-cond
Warn about duplicated conditions in an if-else-if chain. For instance, warn for
the following code:
if (p->q !'= NULL) { ... }
else if (p->q != NULL) { ... }
-Wframe-address
Warn when the ‘__builtin_frame_address’ or ‘__builtin_return_address’
is called with an argument greater than 0. Such calls may return indeterminate
values or crash the program. The warning is included in ‘-Wall’.

-Wno-discarded-qualifiers (C and Objective-C only)
Do not warn if type qualifiers on pointers are being discarded. Typically, the
compiler warns if a const char * variable is passed to a function that takes a
char * parameter. This option can be used to suppress such a warning.

-Wno-discarded-array-qualifiers (C and Objective-C only)
Do not warn if type qualifiers on arrays which are pointer targets are being
discarded. Typically, the compiler warns if a const int (%) [] variable is passed
to a function that takes a int (%) [] parameter. This option can be used to
suppress such a warning.

-Wno-incompatible-pointer-types (C and Objective-C only)
Do not warn when there is a conversion between pointers that have incompatible
types. This warning is for cases not covered by ‘~Wno-pointer-sign’, which
warns for pointer argument passing or assignment with different signedness.

-Wno-int-conversion (C and Objective-C only)
Do not warn about incompatible integer to pointer and pointer to integer con-
versions. This warning is about implicit conversions; for explicit conversions
the warnings ‘-Wno-int-to-pointer-cast’ and ‘-Wno-pointer-to-int-cast’
may be used.

-Wzero-length-bounds
Warn about accesses to elements of zero-length array members that might over-
lap other members of the same object. Declaring interior zero-length arrays is
discouraged because accesses to them are undefined. See See Section 6.18 [Zero
Length], page 544.

Chapter 3: GCC Command Options 123

For example, the first two stores in function bad are diagnosed because the array
elements overlap the subsequent members b and c. The third store is diagnosed
by ‘-Warray-bounds’ because it is beyond the bounds of the enclosing object.

struct X { int a[0]; int b, c; };
struct X x;

void bad (void)

{
x.a[0] = 0; // -Wzero-length-bounds
x.al1]l = 1; // -Wzero-length-bounds
x.a[2] = 2; // -Warray-bounds

}

Option ‘-Wzero-length-bounds’ is enabled by ‘-Warray-bounds’.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘~Wall’ in conjunction with this option does not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wtautological-compare
Warn if a self-comparison always evaluates to true or false. This warning detects
various mistakes such as:

int i = 1;

iG> ...)
This warning also warns about bitwise comparisons that always evaluate to true
or false, for instance:

if ((a & 16) == 10) { ... }

will always be false.
This warning is enabled by ‘-Wall’.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions. A tram-
poline is a small piece of data or code that is created at run time on the stack
when the address of a nested function is taken, and is used to call the nested
function indirectly. For some targets, it is made up of data only and thus re-
quires no special treatment. But, for most targets, it is made up of code and
thus requires the stack to be made executable in order for the program to work

properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

124

Using the GNU Compiler Collection (GCC)

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you should check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but in
ISO C it does not.

In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the ‘#’ appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but ignores because the ‘#” does not appear
as the first character on the line. It also suggests you hide directives like
#pragma not understood by traditional C by indenting them. Some tra-
ditional implementations do not recognize #elif, so this option suggests
avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC'’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.

Initialization of automatic aggregates.

Chapter 3: GCC Command Options 125

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible conversion
warnings; for the full set use ‘-Wtraditional-conversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features appear in your code when using libiberty’s traditional C com-
patibility macros, PARAMS and VPARAMS. This warning is also bypassed for
nested functions because that feature is already a GCC extension and thus
not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)

Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

-Wdeclaration-after-statement (C and Objective-C only)

-Wshadow

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. Tt is not supported by ISO C90. See Section 6.32 [Mixed Labels and
Declarations], page 552.

Warn whenever a local variable or type declaration shadows another
variable, parameter, type, class member (in C++), or instance variable (in
Objective-C) or whenever a built-in function is shadowed. Note that in C++,
the compiler warns if a local variable shadows an explicit typedef, but not if
it shadows a struct/class/enum. If this warning is enabled, it includes also
all instances of local shadowing. This means that ‘-Wno-shadow=local’ and
‘~Wno-shadow=compatible-local’ are ignored when ‘-Wshadow’ is used. Same
as ‘~Wshadow=global’.

-Wno-shadow-ivar (Objective-C only)

Do not warn whenever a local variable shadows an instance variable in an
Objective-C method.

-Wshadow=global

Warn for any shadowing. Same as ‘-Wshadow’.

-Wshadow=local

Warn when a local variable shadows another local variable or parameter.

126 Using the GNU Compiler Collection (GCC)

-Wshadow=compatible-local
Warn when a local variable shadows another local variable or parameter whose
type is compatible with that of the shadowing variable. In C++, type compatibil-
ity here means the type of the shadowing variable can be converted to that of the
shadowed variable. The creation of this flag (in addition to ‘-Wshadow=local’)
is based on the idea that when a local variable shadows another one of incom-
patible type, it is most likely intentional, not a bug or typo, as shown in the
following example:

for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
{

for (int i = 0; i < N; ++i)

{
.
N

Since the two variable i in the example above have incompatible types, enabling
only ‘-Wshadow=compatible-local’ does not emit a warning. Because their
types are incompatible, if a programmer accidentally uses one in place of the
other, type checking is expected to catch that and emit an error or warning.
Use of this flag instead of ‘~Wshadow=local’ can possibly reduce the number
of warnings triggered by intentional shadowing. Note that this also means that
shadowing const char *i by char *i does not emit a warning.

This warning is also enabled by ‘-Wshadow=local’.

-Wlarger-than=byte-size
Warn whenever an object is defined whose size exceeds byte-size.
‘~Wlarger—than="‘PTRDIFF_MAX’ is enabled by default. Warnings controlled
by the option can be disabled either by specifying byte-size of ‘SIZE_MAX’ or
more or by ‘-Wno-larger-than’.

Also warn for calls to bounded functions such as memchr or strnlen that specify
a bound greater than the largest possible object, which is ‘PTRDIFF_MAX’ bytes
by default. These warnings can only be disabled by ‘-Wno-larger-than’.

-Wno-larger-than
Disable ‘-Wlarger-than=’ warnings. The option is equivalent to
‘-Wlarger-than="‘SIZE_MAX’ or larger.

-Wframe-larger-than=byte-size

Warn if the size of a function frame exceeds byte-size. The computation done
to determine the stack frame size is approximate and not conservative. The
actual requirements may be somewhat greater than byte-size even if you do
not get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning. ‘-Wframe-larger-than="‘PTRDIFF_MAX’ is
enabled by default. Warnings controlled by the option can be disabled either by
specifying byte-size of ‘SIZE_MAX’ or more or by ‘~Wno-frame-larger-than’.

Chapter 3: GCC Command Options 127

-Wno-frame-larger—-than
Disable ‘-Wframe-larger-than=" warnings. The option is equivalent to
‘~Wframe-larger-than=""SIZE_MAX’ or larger.

-Wfree-nonheap-object
Warn when attempting to deallocate an object that was either not allocated
on the heap, or by using a pointer that was not returned from a prior call to
the corresponding allocation function. For example, because the call to stpcpy
returns a pointer to the terminating nul character and not to the beginning of
the object, the call to free below is diagnosed.
void f (char *p)

{
p = stpcpy (p, "abc");
/...
free (p); // warning
}

‘-Wfree-nonheap-object’ is included in ‘-Wall’.

-Wstack-usage=byte-size
Warn if the stack usage of a function might exceed byte-size. The computation
done to determine the stack usage is conservative. Any space allocated via
alloca, variable-length arrays, or related constructs is included by the compiler
when determining whether or not to issue a warning.

The message is in keeping with the output of ‘~fstack-usage’.

o If the stack usage is fully static but exceeds the specified amount, it’s:

warning: stack usage is 1120 bytes

e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes

e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

‘~Wstack-usage="‘PTRDIFF_MAX’ is enabled by default. Warnings controlled by
the option can be disabled either by specifying byte-size of ‘SIZE_MAX’ or more
or by ‘-Wno-stack-usage’.

-Wno-stack-usage
Disable ‘-Wstack-usage=’ warnings. The option is equivalent to
‘~-Wstack-usage=""SIZE_MAX’ or larger.

-Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler cannot assume any-
thing on the bounds of the loop indices. With ‘~funsafe-loop-optimizations’
warn if the compiler makes such assumptions.

-Wno-pedantic-ms-format (MinGW targets only)
When used in combination with ‘-Wformat’ and ‘-pedantic’ without GNU
extensions, this option disables the warnings about non-ISO printf / scanf
format width specifiers 132, 164, and I used on Windows targets, which depend
on the MS runtime.

128

Using the GNU Compiler Collection (GCC)

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘~Wpedantic’.

-Wno-pointer—-compare

-Wtsan

Do not warn if a pointer is compared with a zero character constant. This
usually means that the pointer was meant to be dereferenced. For example:

const char *p = foo ();
if (p == ’\0’)
return 42;

Note that the code above is invalid in C++11.
This warning is enabled by default.

Warn about unsupported features in ThreadSanitizer.

ThreadSanitizer does not support std: :atomic_thread_fence and can report
false positives.

This warning is enabled by default.

-Wtype-limits

Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with < or >=. This warning is
also enabled by ‘-Wextra’.

-Wabsolute-value (C and Objective-C only)

-Wcomment

-Wcomments

Warn for calls to standard functions that compute the absolute value of an
argument when a more appropriate standard function is available. For example,
calling abs (3. 14) triggers the warning because the appropriate function to call
to compute the absolute value of a double argument is fabs. The option also
triggers warnings when the argument in a call to such a function has an unsigned
type. This warning can be suppressed with an explicit type cast and it is also
enabled by ‘-Wextra’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wtrigraphs

Warn if any trigraphs are encountered that might change the meaning of the
program. Trigraphs within comments are not warned about, except those that
would form escaped newlines.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

Chapter 3: GCC Command Options 129

-Wundef Warn if an undefined identifier is evaluated in an #if directive. Such identifiers
are replaced with zero.

-Wexpansion-to-defined
Warn whenever ‘defined’ is encountered in the expansion of a macro (including
the case where the macro is expanded by an ‘#if’ directive). Such usage is not
portable. This warning is also enabled by ‘~Wpedantic’ and ‘-Wextra’.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used
if it is expanded or tested for existence at least once. The preprocessor also
warns if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then the preprocessor reports it as unused. To avoid the warning in such a case,
you might improve the scope of the macro’s definition by, for example, moving
it into the first skipped block. Alternatively, you could provide a dummy use
with something like:

#if defined the_macro_causing_the_warning
#endif

-Wno-endif-labels
Do not warn whenever an #else or an #endif are followed by text. This
sometimes happens in older programs with code of the form
#if FOO

#éise FOO0
#endif FOO
The second and third FOO should be in comments. This warning is on by default.

-Wbad-function-cast (C and Objective-C only)
Warn when a function call is cast to a non-matching type. For example, warn
if a call to a function returning an integer type is cast to a pointer type.

-Wc90-c99-compat (C and Objective-C only)
Warn about features not present in ISO C90, but present in ISO C99. For
instance, warn about use of variable length arrays, long long type, bool type,
compound literals, designated initializers, and so on. This option is independent
of the standards mode. Warnings are disabled in the expression that follows
__extension__.

-Wc99-c11-compat (C and Objective-C only)
Warn about features not present in ISO C99, but present in ISO C11. For in-
stance, warn about use of anonymous structures and unions, _Atomic type qual-
ifier, _Thread_local storage-class specifier, _Alignas specifier, Alignof opera-
tor, _Generic keyword, and so on. This option is independent of the standards
mode. Warnings are disabled in the expression that follows __extension__.

130 Using the GNU Compiler Collection (GCC)

-Wc1ll-c2x-compat (C and Objective-C only)
Warn about features not present in ISO C11, but present in ISO C2X. For
instance, warn about omitting the string in _Static_assert, use of ‘[[]]’
syntax for attributes, use of decimal floating-point types, and so on. This
option is independent of the standards mode. Warnings are disabled in the
expression that follows __extension__.

-Wc++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wc++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wc++14-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2011 and
ISO C++ 2014. This warning is enabled by ‘-Wall’.

-Wc++17-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2014 and
ISO C++ 2017. This warning is enabled by ‘-Wall’.

-Wc++20-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2017 and
ISO C++ 2020. This warning is enabled by ‘-Wall’.

-Wno-c++11-extensions (C++ and Objective-C++ only)
Do not warn about C++11 constructs in code being compiled using an older
C++ standard. Even without this option, some C++11 constructs will only be
diagnosed if ‘~Wpedantic’ is used.

-Wno-c++14-extensions (C++ and Objective-C++ only)
Do not warn about C++14 constructs in code being compiled using an older
C++ standard. Even without this option, some C++14 constructs will only be
diagnosed if ‘~Wpedantic’ is used.

-Wno-c++17-extensions (C++ and Objective-C++ only)
Do not warn about C++17 constructs in code being compiled using an older
C++ standard. Even without this option, some C++17 constructs will only be
diagnosed if ‘~Wpedantic’ is used.

-Wno-c++20-extensions (C++ and Objective-C++ only)
Do not warn about C++20 constructs in code being compiled using an older
C++ standard. Even without this option, some C++20 constructs will only be
diagnosed if ‘-Wpedantic’ is used.

-Wno-c++23-extensions (C++ and Objective-C++ only)
Do not warn about C++23 constructs in code being compiled using an older
C++ standard. Even without this option, some C++23 constructs will only be
diagnosed if ‘-Wpedantic’ is used.

Chapter 3: GCC Command Options 131

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char ** is unsafe, as in this example:

/* p is char **x value. x*/
const char **q = (const char **) p;
/* Assignment of readonly string to comnst char * is OK. */

*q = "string";
/* Now char** pointer points to read-only memory. */
**p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wcast-align=strict
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * regardless of the
target machine.

-Wcast-function-type

Warn when a function pointer is cast to an incompatible function pointer. In
a cast involving function types with a variable argument list only the types of
initial arguments that are provided are considered. Any parameter of pointer-
type matches any other pointer-type. Any benign differences in integral types
are ignored, like int vs. long on ILP32 targets. Likewise type qualifiers are
ignored. The function type void (*) (void) is special and matches everything,
which can be used to suppress this warning. In a cast involving pointer to
member types this warning warns whenever the type cast is changing the pointer
to member type. This warning is enabled by ‘-Wextra’.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer produces a warning.
These warnings help you find at compile time code that can try to write into
a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it is just a nuisance. This is why we
did not make ‘-Wall’ request these warnings.

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by longjmp or vfork. This warning
is also enabled by ‘-Wextra’.

-Wconversion
Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,

132 Using the GNU Compiler Collection (GCC)

like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘~Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that never use a type conversion operator: conversions
to void, the same type, a base class or a reference to them. Warnings about
conversions between signed and unsigned integers are disabled by default in
C++ unless ‘-Wsign-conversion’ is explicitly enabled.

Warnings about conversion from arithmetic on a small type back to that type
are only given with ‘~Warith-conversion’.

-Wdangling-else
Warn about constructions where there may be confusion to which if statement
an else branch belongs. Here is an example of such a case:
{
if (a)
if (b)
foo ()
else
bar ;
}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC issues a warn-
ing when this flag is specified. To eliminate the warning, add explicit braces
around the innermost if statement so there is no way the else can belong to
the enclosing if. The resulting code looks like this:

{
if (a)
{
if (b)
foo);
else
bar ();
}
}

This warning is enabled by ‘~Wparentheses’.

-Wdangling-pointer

-Wdangling-pointer=n
Warn about uses of pointers (or C++ references) to objects with automatic
storage duration after their lifetime has ended. This includes local variables
declared in nested blocks, compound literals and other unnamed temporary
objects. In addition, warn about storing the address of such objects in es-
caped pointers. The warning is enabled at all optimization levels but may yield
different results with optimization than without.

Chapter 3: GCC Command Options 133

-Wdangling-pointer=1
At level 1 the warning diagnoses only unconditional uses of dangling
pointers. For example
int £ (int c1, int c2, x)

{

char *p = strchr ((char[1){ c1, c2 }, ¢3);

return p ? *p : ’x’; // warning: dangling pointer to a com-
pound literal
}

In the following function the store of the address of the local variable
x in the escaped pointer *p also triggers the warning.
void g (int **p)
{
int x = 7;
*p = &x; // warning: storing the address of a local variable in *pfii

}
-Wdangling-pointer=2
At level 2, in addition to unconditional uses the warning also diag-
noses conditional uses of dangling pointers.

For example, because the array a in the following function is out of
scope when the pointer s that was set to point is used, the warning
triggers at this level.

void f (char *s)

{
if (!s)
{
char a[12] = "tmpname";
s = a;
3
strcat (s, ".tmp"); // warning: dangling pointer to a may be usedf]
}

‘-Wdangling-pointer=2’ is included in ‘-Wall’.

-Wdate-time
Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are encountered as
they might prevent bit-wise-identical reproducible compilations.

-Wempty-body
Warn if an empty body occurs in an if, else or do while statement. This
warning is also enabled by ‘-Wextra’.

-Wno-endif-labels
Do not warn about stray tokens after #else and #endif.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumerated type mismatches in conditional expressions are also diagnosed
and the warning is enabled by default. In C this warning is enabled by ‘-Wall’.

-Wenum-conversion
Warn when a value of enumerated type is implicitly converted to a different
enumerated type. This warning is enabled by ‘-Wextra’ in C.

134 Using the GNU Compiler Collection (GCC)

-Wjump-misses-init (C, Objective-C only)
Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

‘-Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned. In C++, this
warning is also enabled by ‘-Wall’. In C, it is also enabled by ‘-Wextra’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value. This
includes conversions from real to integer, and from higher precision real to lower
precision real values. This option is also enabled by ‘-Wconversion’.

-Wno-scalar-storage-order
Do not warn on suspicious constructs involving reverse scalar storage order.

-Wsizeof-array-div
Warn about divisions of two sizeof operators when the first one is applied to an
array and the divisor does not equal the size of the array element. In such a
case, the computation will not yield the number of elements in the array, which
is likely what the user intended. This warning warns e.g. about

int fn ()
{
int arr([10];
return sizeof (arr) / sizeof (short);

}
This warning is enabled by ‘-Wall’.

-Wsizeof-pointer-div
Warn for suspicious divisions of two sizeof expressions that divide the pointer
size by the element size, which is the usual way to compute the array size but
won’t work out correctly with pointers. This warning warns e.g. about sizeof
(ptr) / sizeof (ptr[0]) if ptr is not an array, but a pointer. This warning
is enabled by ‘-Wall’.

-Wsizeof-pointer-memaccess
Warn for suspicious length parameters to certain string and memory built-
in functions if the argument uses sizeof. This warning triggers for example
for memset (ptr, 0, sizeof (ptr)); if ptr is not an array, but a pointer,
and suggests a possible fix, or about memcpy (&foo, ptr, sizeof (&foo0));.

Chapter 3: GCC Command Options 135

‘~-Wsizeof-pointer-memaccess’ also warns about calls to bounded string copy
functions like strncat or strncpy that specify as the bound a sizeof expres-
sion of the source array. For example, in the following function the call to
strncat specifies the size of the source string as the bound. That is almost
certainly a mistake and so the call is diagnosed.

void make_file (const char *name)

{
char path[PATH_MAX];
strncpy (path, name, sizeof path - 1);
strncat (path, ".text", sizeof ".text");

.

The ‘-Wsizeof-pointer-memaccess’ option is enabled by ‘-Wall’.

-Wno-sizeof-array-argument
Do not warn when the sizeof operator is applied to a parameter that is declared
as an array in a function definition. This warning is enabled by default for C
and C++ programs.

-Wmemset-elt-size
Warn for suspicious calls to the memset built-in function, if the first argument
references an array, and the third argument is a number equal to the number
of elements, but not equal to the size of the array in memory. This indicates
that the user has omitted a multiplication by the element size. This warning is
enabled by ‘-Wall’.

-Wmemset-transposed-args

Warn for suspicious calls to the memset built-in function where the second
argument is not zero and the third argument is zero. For example, the call
memset (buf, sizeof buf, 0) is diagnosed because memset (buf, 0, sizeof
buf) was meant instead. The diagnostic is only emitted if the third argument is
a literal zero. Otherwise, if it is an expression that is folded to zero, or a cast of
zero to some type, it is far less likely that the arguments have been mistakenly
transposed and no warning is emitted. This warning is enabled by ‘-Wall’.

-Waddress
Warn about suspicious uses of address expressions. These include comparing
the address of a function or a declared object to the null pointer constant such
as in
void f (void);
void g (void)
{

if (!func) // warning: expression evaluates to false
abort ();
}

comparisons of a pointer to a string literal, such as in

void f (const char *x)
{
if (x == "abc") // warning: expression evaluates to false
puts ("equal");

136 Using the GNU Compiler Collection (GCC)

and tests of the results of pointer addition or subtraction for equality to null,

such as in
void f (const int *p, int i)
{
return p + i == NULL;
}

Such uses typically indicate a programmer error: the address of most functions
and objects necessarily evaluates to true (the exception are weak symbols), so
their use in a conditional might indicate missing parentheses in a function call
or a missing dereference in an array expression. The subset of the warning for
object pointers can be suppressed by casting the pointer operand to an integer
type such as inptr_t or uinptr_t. Comparisons against string literals result
in unspecified behavior and are not portable, and suggest the intent was to call
strcmp. The warning is suppressed if the suspicious expression is the result of
macro expansion. ‘-Waddress’ warning is enabled by ‘-Wall’.

-Wno-address-of-packed-member
Do not warn when the address of packed member of struct or union is taken,
which usually results in an unaligned pointer value. This is enabled by default.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected. Also warns when the operands of a logical operator are the same:

extern int a;
if (a<0&& a<0){...1}%}

-Wlogical-not-parentheses
Warn about logical not used on the left hand side operand of a comparison.
This option does not warn if the right operand is considered to be a boolean
expression. Its purpose is to detect suspicious code like the following:

int a;

if (la> 1) { ...}

It is possible to suppress the warning by wrapping the LHS into parentheses:
if ((ta) > 1) { ... }
This warning is enabled by ‘-Wall’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-aggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects un-
defined behavior in some statement during one or more of the iterations.

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This does not stop
errors for incorrect use of supported attributes.

Chapter 3: GCC Command Options 137

Additionally, using ‘-Wno-attributes=’, it is possible to suppress warnings
about unknown scoped attributes (in C++11 and C2X). For example,
‘-Wno-attributes=vendor: :attr’ disables warning about the following
declaration:

[[vendor::attr]] void £();

It is also possible to disable warning about all attributes in a namespace us-
ing ‘-Wno-attributes=vendor::’ which prevents warning about both of these
declarations:

[[vendor: :safel]] void £();

[[vendor: :unsafel] void £2();

Note that ‘~Wno-attributes=" does not imply ‘-Wno-attributes’.

-Wno-builtin-declaration-mismatch
Warn if a built-in function is declared with an incompatible signature or as a
non-function, or when a built-in function declared with a type that does not
include a prototype is called with arguments whose promoted types do not
match those expected by the function. When ‘-Wextra’ is specified, also warn
when a built-in function that takes arguments is declared without a prototype.
The ‘-Wbuiltin-declaration-mismatch’ warning is enabled by default. To
avoid the warning include the appropriate header to bring the prototypes of
built-in functions into scope.

For example, the call to memset below is diagnosed by the warning because the
function expects a value of type size_t as its argument but the type of 32 is
int. With ‘-Wextra’, the declaration of the function is diagnosed as well.

extern void* memset ();
void f (void *d)
{

memset (d, ’\0’, 32);
}

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP TIME DATE FILE__, and
__BASE_FILE__.

—_) = —_) = —_) - -

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype. A definition using ‘()’ is not considered an old-style
definition in C2X mode, because it is equivalent to ‘(void)’ in that case, but
is considered an old-style definition for older standards.

138

Using the GNU Compiler Collection (GCC)

-Wmissing-parameter-type (C and Objective-C only)

A function parameter is declared without a type specifier in K&R-style func-
tions:
void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)

Warn if a global function is defined without a previous prototype declara-
tion. This warning is issued even if the definition itself provides a proto-
type. Use this option to detect global functions that do not have a match-
ing prototype declaration in a header file. This option is not valid for C++
because all function declarations provide prototypes and a non-matching dec-
laration declares an overload rather than conflict with an earlier declaration.
Use ‘-Wmissing-declarations’ to detect missing declarations in C++.

-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global func-
tions that are not declared in header files. In C, no warnings are issued for func-
tions with previous non-prototype declarations; use ‘-Wmissing-prototypes’
to detect missing prototypes. In C++, no warnings are issued for function tem-
plates, or for inline functions, or for functions in anonymous namespaces.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code causes such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification does not trigger a warning:

struct s { int £, g, h; };

struct s x = { .£f =3, .g=41};
In C this option does not warn about the universal zero initializer ‘{ 0 }’:

struct s { int £, g, h; };

struct s x = { 0 };
Likewise, in C++ this option does not warn about the empty { } initializer, for
example:

struct s { int £, g, h; };

sx=9{1;
This warning is included in ‘~Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wno-missing-requires

By default, the compiler warns about a concept-id appearing as a C++20 simple-
requirement:

bool satisfied = requires { C<T> };
Here ‘satisfied’ will be true if ‘C<T>’ is a valid expression, which it is for all
T. Presumably the user meant to write

Chapter 3: GCC Command Options 139

bool satisfied = requires { requires C<T> };
so ‘satisfied’ is only true if concept ‘C’ is satisfied for type ‘T .

This warning can be disabled with ‘-Wno-missing-requires’.

-Wno-missing-template-keyword

The member access tokens ., -> and :: must be followed by the template
keyword if the parent object is dependent and the member being named is a
template.

template <class X>

void DoStuff (X x)

{
x.template DoSomeOtherStuff<X>(); // Good.
x.DoMoreStuff<X>(); // Warning, x is dependent.

}
In rare cases it is possible to get false positives. To silence this, wrap the
expression in parentheses. For example, the following is treated as a template,
even where m and N are integers:

void NotATemplate (my_class t)

{
int N = 5;

bool test = t.m < N > (0); // Treated as a template.
test = (t.m < N) > (0); // Same meaning, but not treated as a template.

}

This warning can be disabled with ‘-Wno-missing-template-keyword’.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FOOF’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=[none|id|nfc|nfkc|

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
‘~Wnormalized=nfc’, which warns about any identifier that is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses. It is equivalent to ‘-Wnormalized’.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

140 Using the GNU Compiler Collection (GCC)

You can switch the warning off for all characters by writing
‘~Wnormalized=none’ or ‘-Wno-normalized’. You should only do
this if you are using some other normalization scheme (like “D”), because
otherwise you can easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, displays just
like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC warns if your code is not in NFKC if you use ‘-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,
but may be useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.

-Wno-attribute-warning
Do not warn about usage of functions (see Section 6.33 [Function Attributes],
page 552) declared with warning attribute. By default, this warning is
enabled. ‘-Wno-attribute-warning’ can be used to disable the warning or
‘-Wno-error=attribute-warning’ can be used to disable the error when
compiled with ‘-Werror’ flag.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.11 [Deprecated
Features], page 896.

)

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.33 [Function Attributes],
page 552), variables (see Section 6.34 [Variable Attributes|, page 618), and types
(see Section 6.35 [Type Attributes|, page 632) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Wno-odr Warn about One Definition Rule violations during link-time optimization. En-
abled by default.

-Wopenacc-parallelism
Warn about potentially suboptimal choices related to OpenACC parallelism.

-Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP simd directive set by
user. The ‘~fsimd-cost-model=unlimited’ option can be used to relax the
cost model.

-Woverride-init (C and Objective-C only)
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.29 [Designated Initializers|, page 549).

This warning is included in ‘~Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

Chapter 3: GCC Command Options 141

-Wno-override-init-side-effects (C and Objective-C only)
Do not warn if an initialized field with side effects is overridden when using
designated initializers (see Section 6.29 [Designated Initializers|, page 549). This
warning is enabled by default.

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar is
misaligned even though struct bar does not itself have the packed attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wnopacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields of
type char. This was fixed in GCC 4.4 but the change can lead to differences
in the structure layout. GCC informs you when the offset of such a field has
changed in GCC 4.4. For example there is no longer a 4-bit padding between
field a and b in this structure:

struct foo

{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

-Wpacked-not-aligned (C, C++, Objective-C and Objective-C++ only)
Warn if a structure field with explicitly specified alignment in a packed struct
or union is misaligned. For example, a warning will be issued on struct S, like,
warning: alignment 1 of ’struct S’ is less than 8, in this code:
struct __attribute ((aligned (8))) S8 { char a[8]; };
struct __attribute__ ((packed)) S {

struct S8 s8;
};

This warning is enabled by ‘-Wall’.

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

142 Using the GNU Compiler Collection (GCC)

-Wrestrict
Warn when an object referenced by a restrict-qualified parameter (or, in
C++, a __restrict-qualified parameter) is aliased by another argument, or
when copies between such objects overlap. For example, the call to the strcpy
function below attempts to truncate the string by replacing its initial characters
with the last four. However, because the call writes the terminating NUL into
a[4], the copies overlap and the call is diagnosed.

void foo (void)

{
char a[] = "abcd1234";
strcpy (a, a + 4);

}

The ‘-Wrestrict’ option detects some instances of simple overlap even without
optimization but works best at ‘-02’ and above. It is included in ‘-Wall’.

-Wnested-externs (C and Objective-C only)
Warn if an extern declaration is encountered within a function.

-Winline Warn if a function that is declared as inline cannot be inlined. Even with this
option, the compiler does not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Winterference-size
Warn about use of C++17 std: :hardware_destructive_interference_size
without specifying its value with ‘--param destructive-interference-size’.
Also warn about questionable values for that option.

This variable is intended to be used for controlling class layout, to avoid false
sharing in concurrent code:

struct independent_fields {
alignas(std::hardware_destructive_interference_size) std::atomic<int> one;[li]
alignas(std::hardware_destructive_interference_size) std::atomic<int> two;]J
};
Here ‘one’ and ‘two’ are intended to be far enough apart that stores to one
won’t require accesses to the other to reload the cache line.

By default, ‘--param destructive-interference-size’ and ‘--param

constructive-interference-size’ are set based on the current ‘-mtune’
option, typically to the L1 cache line size for the particular target CPU,
sometimes to a range if tuning for a generic target. So all translation units
that depend on ABI compatibility for the use of these variables must be
compiled with the same ‘-mtune’ (or ‘-mcpu’).

If ABI stability is important, such as if the use is in a header for a library,
you should probably not use the hardware interference size variables at all.
Alternatively, you can force a particular value with ‘-~-param’.

Chapter 3: GCC Command Options 143

If you are confident that your use of the variable does not affect ABI
outside a single build of your project, you can turn off the warning with
‘~Wno-interference-size’.

-Wint-in-bool-context
Warn for suspicious use of integer values where boolean values are expected,
such as conditional expressions (7:) using non-boolean integer constants in
boolean context, like if (a<=b 7 2 : 3). Or left shifting of signed integers
in boolean context, like for (a =0; 1 << a; a++);. Likewise for all kinds of
multiplications regardless of the data type. This warning is enabled by ‘-Wall’.

-Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.22 [Precompiled Headers]
page 505) is found in the search path but cannot be used.

9

-Wlong-long
Warn if long long type is used. This is enabled by either ‘-Wpedantic’ or
‘~Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘~Wno-long-long’.

-Wvariadic-macros
Warn if variadic macros are used in ISO C90 mode, or if the GNU
alternate syntax is used in ISO C99 mode. This is enabled by either
‘~Wpedantic’ or ‘-Wtraditional’. To inhibit the warning messages, use
‘~Wno-variadic-macros’.

-Wno-varargs
Do not warn upon questionable usage of the macros used to handle variable
arguments like va_start. These warnings are enabled by default.

-Wvector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar

type.

-Wvla Warn if a variable-length array is used in the code. ‘-Wno-vla’ prevents the
‘~Wpedantic’ warning of the variable-length array.

144 Using the GNU Compiler Collection (GCC)

-Wvla-larger—-than=byte-size
If this option is used, the compiler warns for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that
allows the array size to exceed byte-size bytes. This is similar to how
‘-Walloca-larger-than='byte-size works, but with variable-length arrays.

Note that GCC may optimize small variable-length arrays of a known value
into plain arrays, so this warning may not get triggered for such arrays.

‘~-Wvla-larger-than=""PTRDIFF_MAX’ is enabled by default but is typically only
effective when ‘~ftree-vrp’ is active (default for ‘-02’ and above).

See also ‘-Walloca-larger-than=byte-size’.

-Wno-vla-larger—-than
Disable ‘-Wvla-larger-than=" warnings. The option is equivalent to
‘-Wvla-larger-than="‘SIZE_MAX’ or larger.

-Wvla-parameter
Warn about redeclarations of functions involving arguments of Variable Length
Array types of inconsistent kinds or forms, and enable the detection of out-of-
bounds accesses to such parameters by warnings such as ‘-Warray-bounds’.

If the first function declaration uses the VLA form the bound specified in the
array is assumed to be the minimum number of elements expected to be pro-
vided in calls to the function and the maximum number of elements accessed
by it. Failing to provide arguments of sufficient size or accessing more than the
maximum number of elements may be diagnosed.

For example, the warning triggers for the following redeclarations because the
first one allows an array of any size to be passed to f while the second one
specifies that the array argument must have at least n elements. In addition,
calling £ with the associated VLA bound parameter in excess of the actual VLA
bound triggers a warning as well.

void f (int n, int([n]);
void £ (int, int[]); // warning: argument 2 previously declared as a VLAH

void g (int n)

{
if (n > 4)
return;
int al[n];
f (sizeof a, a); // warning: access to a by f may be out of bounds
}

‘-Wvla-parameter’ is included in ‘-Wall’. The ‘-Warray-parameter’ option
triggers warnings for similar problems involving ordinary array arguments.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 145

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers are unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC refuses to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-Wpedantic’, which can be disabled with ‘-Wno-pointer-sign’.

-Wstack-protector
This option is only active when ‘~fstack-protector’ is active. It warns about
functions that are not protected against stack smashing.

-Woverlength-strings
Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-Wpedantic’, and can be disabled with
‘~Wno-overlength-strings’.

-Wunsuffixed-float-constants (C and Objective-C only)
Issue a warning for any floating constant that does not have a suffix. When
used together with ‘-Wsystem-headers’ it warns about such constants in system
header files. This can be useful when preparing code to use with the FLOAT_
CONST_DECIMAL64 pragma from the decimal floating-point extension to C99.

-Wno-lto-type-mismatch
During the link-time optimization, do not warn about type mismatches in global
declarations from different compilation units. Requires ‘-f1to’ to be enabled.
Enabled by default.

-Wno-designated-init (C and Objective-C only)
Suppress warnings when a positional initializer is used to initialize a structure
that has been marked with the designated_init attribute.

3.9 Options That Control Static Analysis

-fanalyzer
This option enables an static analysis of program flow which looks for “interest-
ing” interprocedural paths through the code, and issues warnings for problems
found on them.

146 Using the GNU Compiler Collection (GCC)

This analysis is much more expensive than other GCC warnings.
Enabling this option effectively enables the following warnings:

-Wanalyzer-double-fclose
-Wanalyzer-double-free
-Wanalyzer-exposure-through-output-file
-Wanalyzer-file-leak
-Wanalyzer-free-of-non-heap
-Wanalyzer-malloc-leak
-Wanalyzer-mismatching-deallocation
-Wanalyzer-null-argument
-Wanalyzer-null-dereference
-Wanalyzer-possible-null-argument
-Wanalyzer-possible-null-dereference
-Wanalyzer-shift-count-negative
-Wanalyzer-shift-count-overflow
-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-unsafe-call-within-signal-handler
-Wanalyzer-use-after-free
-Wanalyzer-use-of-pointer-in-stale-stack-frame
-Wanalyzer-use-of-uninitialized-value
-Wanalyzer-write-to-const
-Wanalyzer-write-to-string-literal

This option is only available if GCC was configured with analyzer support
enabled.

-Wanalyzer-too-complex
If ‘~-fanalyzer’ is enabled, the analyzer uses various heuristics to attempt to
explore the control flow and data flow in the program, but these can be defeated
by sufficiently complicated code.

By default, the analysis silently stops if the code is too complicated
for the analyzer to fully explore and it reaches an internal limit. The
‘~Wanalyzer-too-complex’ option warns if this occurs.

-Wno-analyzer-double-fclose
This warning requires ‘-fanalyzer’, which enables it; use
‘~Wno-analyzer-double-fclose’ to disable it.

This diagnostic warns for paths through the code in which a FILE * can have
fclose called on it more than once.

-Wno-analyzer-double-free
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-double-free’ to disable it.
This diagnostic warns for paths through the code in which a pointer can have a
deallocator called on it more than once, either free, or a deallocator referenced
by attribute malloc.

-Wno-analyzer-exposure-through-output-file
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-exposure-through-output-file’ to disable it.

This diagnostic warns for paths through the code in which a security-sensitive
value is written to an output file (such as writing a password to a log file).

Chapter 3: GCC Command Options 147

-Wno-analyzer-file-leak
This warning requires ‘-fanalyzer’, which enables it; use
‘~Wno-analyzer-file-leak’ to disable it.

This diagnostic warns for paths through the code in which a <stdio.h> FILE
* stream object is leaked.

-Wno-analyzer-free-of-non-heap
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-free-of-non-heap’ to disable it.

This diagnostic warns for paths through the code in which free is called on a
non-heap pointer (e.g. an on-stack buffer, or a global).

-Wno-analyzer-malloc-leak
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-malloc-leak’ to disable it.

This diagnostic warns for paths through the code in which a pointer allocated
via an allocator is leaked: either malloc, or a function marked with attribute
malloc.

-Wno-analyzer-mismatching-deallocation
This warning requires ‘-fanalyzer’, which enables it; use
‘~-Wno-analyzer-mismatching-deallocation’ to disable it.

This diagnostic warns for paths through the code in which the wrong deal-
location function is called on a pointer value, based on which function was
used to allocate the pointer value. The diagnostic will warn about mismatches
between free, scalar delete and vector delete[], and those marked as allo-
cator/deallocator pairs using attribute malloc.

-Wno-analyzer-possible-null-argument
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-possible-null-argument’ to disable it.

This diagnostic warns for paths through the code in which a possibly-NULL
value is passed to a function argument marked with __attribute_
((nonnull)) as requiring a non-NULL value.

-Wno-analyzer-possible-null-dereference
This warning requires ‘-fanalyzer’, which enables it; use
‘~-Wno-analyzer-possible-null-dereference’ to disable it.

This diagnostic warns for paths through the code in which a possibly-NULL
value is dereferenced.

-Wno-analyzer-null-argument
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-null-argument’ to disable it.

This diagnostic warns for paths through the code in which a value known
to be NULL is passed to a function argument marked with __attribute__
((nonnull)) as requiring a non-NULL value.

148

Using the GNU Compiler Collection (GCC)

-Wno-analyzer-null-dereference

This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-null-dereference’ to disable it.

This diagnostic warns for paths through the code in which a value known to be
NULL is dereferenced.

-Wno-analyzer—-shift-count-negative

This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-shift-count-negative’ to disable it.

This diagnostic warns for paths through the code in which a shift is attempted
with a negative count. It is analogous to the ‘-Wshift-count-negative’ di-
agnostic implemented in the C/C++ front ends, but is implemented based on
analyzing interprocedural paths, rather than merely parsing the syntax tree.
However, the analyzer does not prioritize detection of such paths, so false neg-
atives are more likely relative to other warnings.

-Wno-analyzer-shift-count-overflow

This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-shift-count-overflow’ to disable it.

This diagnostic warns for paths through the code in which a shift is attempted
with a count greater than or equal to the precision of the operand’s type.
It is analogous to the ‘-Wshift-count-overflow’ diagnostic implemented in
the C/C++ front ends, but is implemented based on analyzing interprocedural
paths, rather than merely parsing the syntax tree. However, the analyzer does
not prioritize detection of such paths, so false negatives are more likely relative
to other warnings.

-Wno-analyzer-stale-setjmp-buffer

This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-stale-setjmp-buffer’ to disable it.

This diagnostic warns for paths through the code in which longjmp is called to
rewind to a jmp_buf relating to a setjmp call in a function that has returned.

When setjmp is called on a jmp_buf to record a rewind location, it records the
stack frame. The stack frame becomes invalid when the function containing the
setjmp call returns. Attempting to rewind to it via longjmp would reference a
stack frame that no longer exists, and likely lead to a crash (or worse).

-Wno-analyzer-tainted-allocation-size

This warning requires both ‘~fanalyzer’ and ‘-fanalyzer-checker=taint’ to
enable it; use ‘-Wno-analyzer-tainted-allocation-size’ to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the size of an allocation without being
sanitized, so that an attacker could inject an excessively large allocation and
potentially cause a denial of service attack.

See CWE-789: Memory Allocation with Excessive Size Value.

-Wno-analyzer-tainted-array-index

This warning requires both ‘-fanalyzer’ and ‘-fanalyzer-checker=taint’ to
enable it; use ‘-Wno-analyzer-tainted-array-index’ to disable it.

https://cwe.mitre.org/data/definitions/789.html

Chapter 3: GCC Command Options 149

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the index of an array access without
being sanitized, so that an attacker could inject an out-of-bounds access.

See CWE-129: Improper Validation of Array Index.

-Wno-analyzer-tainted-divisor
This warning requires both ‘~fanalyzer’ and ‘-fanalyzer-checker=taint’ to
enable it; use ‘~-Wno-analyzer-tainted-divisor’ to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the divisor in a division or modulus
operation without being sanitized, so that an attacker could inject a division-
by-zero.

-Wno-analyzer-tainted-offset
This warning requires both ‘~fanalyzer’ and ‘-fanalyzer-checker=taint’ to
enable it; use ‘-Wno-analyzer-tainted-offset’ to disable it.

This diagnostic warns for paths through the code in which a value that could be
under an attacker’s control is used as a pointer offset without being sanitized,
so that an attacker could inject an out-of-bounds access.

See CWE-823: Use of Out-of-range Pointer Offset.

-Wno-analyzer-tainted-size
This warning requires both ‘~fanalyzer’ and ‘-fanalyzer-checker=taint’ to
enable it; use ‘~-Wno-analyzer-tainted-size’ to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the size of an operation such as memset
without being sanitized, so that an attacker could inject an out-of-bounds ac-
cess.

-Wno-analyzer-unsafe-call-within-signal-handler
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-unsafe-call-within-signal-handler’ to disable
it.
This diagnostic warns for paths through the code in which a function known to
be async-signal-unsafe (such as fprintf) is called from a signal handler.

-Wno-analyzer-use-after-free
This warning requires ‘-fanalyzer’, which enables it; use
‘~Wno-analyzer-use-after-free’ to disable it.

This diagnostic warns for paths through the code in which a pointer is used
after a deallocator is called on it: either free, or a deallocator referenced by
attribute malloc.

-Wno-analyzer-use-of-pointer-in-stale-stack-frame
This warning requires ‘-fanalyzer’, which enables it; use
‘~-Wno-analyzer-use-of-pointer-in-stale-stack-frame’ to disable
it.
This diagnostic warns for paths through the code in which a pointer is derefer-
enced that points to a variable in a stale stack frame.

https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/823.html

150 Using the GNU Compiler Collection (GCC)

-Wno-analyzer-write-to-const
This warning requires ‘-fanalyzer’, which enables it; use
‘~Wno-analyzer-write-to-const’ to disable it.

This diagnostic warns for paths through the code in which the analyzer detects
an attempt to write through a pointer to a const object. However, the analyzer
does not prioritize detection of such paths, so false negatives are more likely
relative to other warnings.

-Wno-analyzer-write-to-string-literal
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-write-to-string-literal’ to disable it.

This diagnostic warns for paths through the code in which the analyzer detects
an attempt to write through a pointer to a string literal. However, the analyzer
does not prioritize detection of such paths, so false negatives are more likely
relative to other warnings.

-Wno-analyzer-use-of-uninitialized-value
This warning requires ‘-fanalyzer’, which enables it; use
‘-Wno-analyzer-use-of-uninitialized-value’ to disable it.

This diagnostic warns for paths through the code in which an uninitialized value
is used.

Pertinent parameters for controlling the exploration are: ‘--param analyzer-bb-explosion-factor=value’

‘~—param analyzer-max—-enodes-per-program-point=value’, ‘-~—param analyzer-max-recursion-depth=v
7
and ‘--param analyzer-min-snodes-for-call-summary=value’.

The following options control the analyzer.

-fanalyzer-call-summaries
Simplify interprocedural analysis by computing the effect of certain calls, rather
than exploring all paths through the function from callsite to each possible
return.

If enabled, call summaries are only used for functions with more than
one call site, and that are sufficiently complicated (as per ‘--param
analyzer-min-snodes-for-call-summary=value’).

-fanalyzer-checker=name
Restrict the analyzer to run just the named checker, and enable it.

Some checkers are disabled by default (even with ‘~fanalyzer’), such as the
taint checker that implements ‘~-Wanalyzer-tainted-array-index’, and this
option is required to enable them.

Note: currently, ‘~-fanalyzer-checker=taint’ disables the following warnings
from ‘~fanalyzer’:

-Wanalyzer-double-fclose
-Wanalyzer-double-free
-Wanalyzer-exposure-through-output-file
-Wanalyzer-file-leak
-Wanalyzer-free-of-non-heap
-Wanalyzer-malloc-leak

Chapter 3: GCC Command Options 151

-Wanalyzer-mismatching-deallocation
-Wanalyzer-null-argument
-Wanalyzer-null-dereference
-Wanalyzer-possible-null-argument
-Wanalyzer-possible-null-dereference
-Wanalyzer-unsafe-call-within-signal-handler
-Wanalyzer-use-after-free

-fno-analyzer-feasibility
This option is intended for analyzer developers.
By default the analyzer verifies that there is a feasible control flow path for each
diagnostic it emits: that the conditions that hold are not mutually exclusive.
Diagnostics for which no feasible path can be found are rejected. This filtering
can be suppressed with ‘~-fno-analyzer-feasibility’, for debugging issues in
this code.

-fanalyzer-fine-grained
This option is intended for analyzer developers.

Internally the analyzer builds an “exploded graph” that combines control flow
graphs with data flow information.

By default, an edge in this graph can contain the effects of a run of multi-
ple statements within a basic block. With ‘~fanalyzer-fine-grained’, each
statement gets its own edge.

-fanalyzer—-show-duplicate-count
This option is intended for analyzer developers: if multiple diagnostics have
been detected as being duplicates of each other, it emits a note when report-
ing the best diagnostic, giving the number of additional diagnostics that were
suppressed by the deduplication logic.

-fno-analyzer-state-merge
This option is intended for analyzer developers.

By default the analyzer attempts to simplify analysis by merging sufficiently
similar states at each program point as it builds its “exploded graph”. With
‘~-fno-analyzer-state-merge’ this merging can be suppressed, for debugging
state-handling issues.

-fno-analyzer-state-purge
This option is intended for analyzer developers.

By default the analyzer attempts to simplify analysis by purging aspects of
state at a program point that appear to no longer be relevant e.g. the values
of locals that aren’t accessed later in the function and which aren’t relevant to
leak analysis.

With ‘~-fno-analyzer-state-purge’ this purging of state can be suppressed,
for debugging state-handling issues.

—-fanalyzer-transitivity
This option enables transitivity of constraints within the analyzer.

152 Using the GNU Compiler Collection (GCC)

-fanalyzer-verbose-edges
This option is intended for analyzer developers. It enables more verbose, lower-
level detail in the descriptions of control flow within diagnostic paths.

-fanalyzer-verbose-state-changes
This option is intended for analyzer developers. It enables more verbose, lower-
level detail in the descriptions of events relating to state machines within diag-
nostic paths.

-fanalyzer-verbosity=level
This option controls the complexity of the control flow paths that are emitted
for analyzer diagnostics.

The level can be one of:

‘0’ At this level, interprocedural call and return events are displayed,
along with the most pertinent state-change events relating to a
diagnostic. For example, for a double-free diagnostic, both calls
to free will be shown.

‘1 As per the previous level, but also show events for the entry to each
function.
‘2’ As per the previous level, but also show events relating to control

flow that are significant to triggering the issue (e.g. “true path
taken” at a conditional).

This level is the default.

‘3’ As per the previous level, but show all control flow events, not just
significant ones.

‘4’ This level is intended for analyzer developers; it adds various other
events intended for debugging the analyzer.

-fdump-analyzer
Dump internal details about what the analyzer is doing to
‘file.analyzer.txt’. This option is overridden by ‘~fdump-analyzer-stderr’|]

-fdump-analyzer-stderr
Dump internal details about what the analyzer is doing to stderr. This option
overrides ‘-~fdump-analyzer’.

—-fdump-analyzer-callgraph
Dump a representation of the call graph suitable for viewing with GraphViz to
‘file.callgraph.dot’.

-fdump-analyzer-exploded-graph
Dump a representation of the “exploded graph” suitable for viewing with
GraphViz to ‘file.eg.dot’. Nodes are color-coded based on state-machine
states to emphasize state changes.

—fdump-analyzer—-exploded-nodes
Emit diagnostics showing where nodes in the “exploded graph” are in relation
to the program source.

Chapter 3: GCC Command Options 153

-fdump-analyzer-exploded-nodes-2
Dump a textual representation of the “exploded graph” to ‘file.eg.txt’.

-fdump-analyzer-exploded-nodes-3
Dump a textual representation of the “exploded graph” to one dump file per
node, to ‘file.eg-id.txt’. This is typically a large number of dump files.

-fdump-analyzer-exploded-paths
Dump a textual representation of the “exploded path” for each diagnostic to
‘file.idx.kind.epath.txt’.

-fdump-analyzer-feasibility
Dump internal details about the analyzer’s search for feasible paths. The details
are written in a form suitable for viewing with GraphViz to filenames of the
form ‘file.x.fg.dot’, ‘file.*.tg.dot’, and ‘file.*.fpath.txt’.

-fdump-analyzer-json
Dump a compressed JSON representation of analyzer internals to
‘file.analyzer. json.gz’. The precise format is subject to change.

-fdump-analyzer-state-purge
As per ‘-fdump-analyzer-supergraph’, dump a representation of the “super-
graph” suitable for viewing with GraphViz, but annotate the graph with in-
formation on what state will be purged at each node. The graph is written to
‘file.state-purge.dot’.

-fdump-analyzer-supergraph
Dump representations of the “supergraph” suitable for viewing with GraphViz
to ‘file.supergraph.dot’ and to ‘file.supergraph-eg.dot’. These show
all of the control flow graphs in the program, with interprocedural edges for
calls and returns. The second dump contains annotations showing nodes in the
“exploded graph” and diagnostics associated with them.

—fdump-analyzer—-untracked
Emit custom warnings with internal details intended for analyzer developers.

3.10 Options for Debugging Your Program

To tell GCC to emit extra information for use by a debugger, in almost all cases you need
only to add ‘-g’ to your other options. Some debug formats can co-exist (like DWARF
with CTF) when each of them is enabled explicitly by adding the respective command line
option to your other options.

GCC allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized code may
occasionally be surprising: some variables you declared may not exist at all; flow of control
may briefly move where you did not expect it; some statements may not be executed because
they compute constant results or their values are already at hand; some statements may
execute in different places because they have been moved out of loops. Nevertheless it
is possible to debug optimized output. This makes it reasonable to use the optimizer for
programs that might have bugs.

If you are not using some other optimization option, consider using ‘-0g’ (see Section 3.11
[Optimize Options|, page 161) with ‘-g’. With no ‘-0’ option at all, some compiler passes

154

Using the GNU Compiler Collection (GCC)

that collect information useful for debugging do not run at all, so that ‘-0g’ may result in
a better debugging experience.

)

-ggdb

-gdwarf

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but probably makes other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘-gvms’ (see

below).

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF, stabs, or the native format if neither of
those are supported), including GDB extensions if at all possible.

-gdwarf-version

-gbtf

-gctf

-gctflevel

Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3, 4 or 5; the default version for most targets is
5 (with the exception of VxWorks, TPF and Darwin/Mac OS X, which default
to version 2, and AIX, which defaults to version 4).

Note that with DWARF Version 2, some ports require and always use some
non-conflicting DWARF 3 extensions in the unwind tables.

Version 4 may require GDB 7.0 and ‘-fvar-tracking-assignments’ for max-
imum benefit. Version 5 requires GDB 8.0 or higher.

GCC no longer supports DWARF Version 1, which is substantially different
than Version 2 and later. For historical reasons, some other DWARF-related
options such as ‘~fno-dwarf2-cfi-asm’) retain a reference to DWARF Version
2 in their names, but apply to all currently-supported versions of DWARF.

Request BTF debug information. BTF is the default debugging format for the
eBPF target. On other targets, like x86, BTF debug information can be gen-
erated along with DWARF debug information when both of the debug formats
are enabled explicitly via their respective command line options.

Request CTF debug information and use level to specify how much CTF debug
information should be produced. If ‘-gctf’ is specified without a value for level,
the default level of CTF debug information is 2.

CTF debug information can be generated along with DWARF debug informa-
tion when both of the debug formats are enabled explicitly via their respective
command line options.

Level 0 produces no CTF debug information at all. Thus, ‘-gctf0’ negates
‘—gctf’.

Level 1 produces CTF information for tracebacks only. This includes callsite
information, but does not include type information.

Chapter 3:

GCC Command Options 155

Level 2 produces type information for entities (functions, data objects etc.) at
file-scope or global-scope only.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output that is not understood by DBX. On System V Release 4
systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gvms Produce debugging information in Alpha/VMS debug format (if that is sup-
ported). This is the format used by DEBUG on Alpha/VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gxcofflevel

-gvmslevel

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 0 produces no debug information at all. Thus, ‘-g0’ negates ‘-g’.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, and line number tables, but no information
about local variables.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

If you use multiple ‘-g’ options, with or without level numbers, the last such
option is the one that is effective.

‘~gdwarf’ does not accept a concatenated debug level, to avoid confusion with
‘~gdwarf-level’. Instead use an additional ‘-glevel’ option to change the
debug level for DWARF.

-fno-eliminate-unused-debug-symbols

By default, no debug information is produced for symbols that are not actually
used. Use this option if you want debug information for all symbols.

156

Using the GNU Compiler Collection (GCC)

-femit-class-debug-always

Instead of emitting debugging information for a C++ class in only one object file,
emit it in all object files using the class. This option should be used only with
debuggers that are unable to handle the way GCC normally emits debugging
information for classes because using this option increases the size of debugging
information by as much as a factor of two.

-fno-merge-debug-strings

Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new

When compiling files residing in directory ‘o1d’, record debugging information
describing them as if the files resided in directory ‘new’ instead. This can be
used to replace a build-time path with an install-time path in the debug info.
It can also be used to change an absolute path to a relative path by using .’ for
new. This can give more reproducible builds, which are location independent,
but may require an extra command to tell GDB where to find the source files.
See also ‘-ffile-prefix-map’.

-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0’, ‘-02’,
...), debugging information (‘~g’) and the debug info format supports it.

-fvar-tracking-assignments

Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ‘~gdwarf-4’
is recommended along with it.

It can be enabled even if var-tracking is disabled, in which case annotations
are created and maintained, but discarded at the end. By default, this flag is
enabled together with ‘-fvar-tracking’, except when selective scheduling is
enabled.

-gsplit-dwarf

-gdwarf32
-gdwarf64

If DWARF debugging information is enabled, separate as much debugging in-
formation as possible into a separate output file with the extension ‘.dwo’. This
option allows the build system to avoid linking files with debug information.
To be useful, this option requires a debugger capable of reading ‘.dwo’ files.

If DWARF debugging information is enabled, the ‘~gdwarf32’ selects the 32-bit
DWARF format and the ‘-gdwarf64’ selects the 64-bit DWARF format. The

Chapter 3: GCC Command Options 157

default is target specific, on most targets it is ‘~gdwarf32’ though. The 32-bit
DWARF format is smaller, but can’t support more than 2GiB of debug infor-
mation in any of the DWARF debug information sections. The 64-bit DWARF
format allows larger debug information and might not be well supported by all
consumers yet.

-gdescribe-dies
Add description attributes to some DWARF DIEs that have no name attribute,
such as artificial variables, external references and call site parameter DIEs.

—-gpubnames
Generate DWARF .debug_pubnames and .debug_pubtypes sections.

-ggnu-pubnames
Generate .debug_pubnames and .debug_pubtypes sections in a format suitable
for conversion into a GDB index. This option is only useful with a linker that
can produce GDB index version 7.

-fdebug-types-section
When using DWARF Version 4 or higher, type DIEs can be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat section since the linker
can then remove duplicates. But not all DWARF consumers support .debug_
types sections yet and on some objects .debug_types produces larger instead
of smaller debugging information.

-grecord-gcc-switches

-gno-record-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW_AT _producer attribute
in DWARF debugging information. The options are concatenated with spaces
separating them from each other and from the compiler version. It is enabled by
default. See also ‘~frecord-gcc-switches’ for another way of storing compiler
options into the object file.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’.

-gas—-loc-support
Inform the compiler that the assembler supports .loc directives. It may then
use them for the assembler to generate DWARF2+ line number tables.

This is generally desirable, because assembler-generated line-number tables are
a lot more compact than those the compiler can generate itself.

This option will be enabled by default if, at GCC configure time, the assembler
was found to support such directives.

158 Using the GNU Compiler Collection (GCC)

-gno-as—loc—-support
Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
line number tables are to be generated.

-gas-locview-support
Inform the compiler that the assembler supports view assignment and reset
assertion checking in .loc directives.

This option will be enabled by default if, at GCC configure time, the assembler
was found to support them.

-gno-as—-locview-support
Force GCC to assign view numbers internally, if ‘~-gvariable-location-views’
are explicitly requested.

—-gcolumn-info

-gno-column-info
Emit location column information into DWARF debugging information, rather
than just file and line. This option is enabled by default.

-gstatement-frontiers

-gno-statement-frontiers
This option causes GCC to create markers in the internal representation at
the beginning of statements, and to keep them roughly in place throughout
compilation, using them to guide the output of is_stmt markers in the line
number table. This is enabled by default when compiling with optimization
(‘-0s’, ‘=017, *=02’, ...), and outputting DWARF 2 debug information at the
normal level.

-gvariable-location-views

-gvariable-location-views=incompatb

-gno-variable-location-views
Augment variable location lists with progressive view numbers implied from the
line number table. This enables debug information consumers to inspect state
at certain points of the program, even if no instructions associated with the
corresponding source locations are present at that point. If the assembler lacks
support for view numbers in line number tables, this will cause the compiler to
emit the line number table, which generally makes them somewhat less com-
pact. The augmented line number tables and location lists are fully backward-
compatible, so they can be consumed by debug information consumers that are
not aware of these augmentations, but they won’t derive any benefit from them
either.

This is enabled by default when outputting DWARF 2 debug infor-
mation at the normal level, as long as there is assembler support,
‘~-fvar-tracking-assignments’ is enabled and ‘-gstrict-dwarf’ is
not. When assembler support is not available, this may still be enabled,
but it will force GCC to output internal line number tables, and if
‘-ginternal-reset-location-views’ is not enabled, that will most certainly
lead to silently mismatching location views.

There is a proposed representation for view numbers that is not backward
compatible with the location list format introduced in DWARF 5, that can be

Chapter 3: GCC Command Options 159

enabled with ‘~gvariable-location-views=incompat5’. This option may be
removed in the future, is only provided as a reference implementation of the
proposed representation. Debug information consumers are not expected to
support this extended format, and they would be rendered unable to decode
location lists using it.

-ginternal-reset-location-views
-gno-internal-reset-location-views

Attempt to determine location views that can be omitted from location view
lists. This requires the compiler to have very accurate insn length estimates,
which isn’t always the case, and it may cause incorrect view lists to be generated
silently when using an assembler that does not support location view lists. The
GNU assembler will flag any such error as a view number mismatch. This is
only enabled on ports that define a reliable estimation function.

-ginline-points
-gno-inline-points

-gz[=type]

Generate extended debug information for inlined functions. Location view
tracking markers are inserted at inlined entry points, so that address and view
numbers can be computed and output in debug information. This can be en-
abled independently of location views, in which case the view numbers won’t
be output, but it can only be enabled along with statement frontiers, and it is
only enabled by default if location views are enabled.

Produce compressed debug sections in DWARF format, if that is supported. If
type is not given, the default type depends on the capabilities of the assembler
and linker used. type may be one of ‘none’ (don’t compress debug sections),
‘z1ib’ (use zlib compression in ELF gABI format), or ‘zlib-gnu’ (use zlib
compression in traditional GNU format). If the linker doesn’t support writing
compressed debug sections, the option is rejected. Otherwise, if the assembler
does not support them, ‘-gz’ is silently ignored when producing object files.

-femit-struct-debug-baseonly

Emit debug information for struct-like types only when the base name of the

compilation source file matches the base name of file in which the struct is
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See ‘-femit-struct-debug-reduced’ for a less aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF debug output.

-femit-struct-debug-reduced

Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. See

160 Using the GNU Compiler Collection (GCC)

‘~femit-struct-debug-baseonly’ for a more aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF debug output.

-femit-struct-debug-detailed[=spec-1ist]
Specify the struct-like types for which the compiler generates debug informa-
tion. The intent is to reduce duplicate struct debug information between dif-
ferent object files within the same program.

This option is a detailed version of ‘-femit-struct-debug-reduced’ and
‘~femit-struct-debug-baseonly’, which serves for most needs.

A specification has the syntax

[‘dir:’|‘ind:’][‘ord:’|‘gen:’](‘any’| ‘sys’| ‘base’| ‘none’)

The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect. An
example is ‘struct one direct; struct two * indirect;’.

The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
‘~femit-struct-debug-detailed’ does not yet implement them.

The third word specifies the source files for those structs for which the compiler
should emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling ‘foo.c’, debug
information is generated for types declared in that file and ‘foo.h’, but not other
header files. The value ‘sys’ means those types satisfying ‘base’ or declared in
system or compiler headers.

You may need to experiment to determine the best settings for your application.
The default is ‘~femit-struct-debug-detailed=all’.
This option works only with DWARF debug output.

-fno-dwarf2-cfi-asm
Emit DWARF unwind info as compiler generated .eh_frame section instead of
using GAS .cfi_x directives.

-fno-eliminate-unused-debug-types

Normally, when producing DWARF output, GCC avoids producing debug sym-
bol output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually
used in that compilation unit, for example if, in the debugger, you want to cast
a value to a type that is not actually used in your program (but is declared).
More often, however, this results in a significant amount of wasted space.

Chapter 3: GCC Command Options 161

3.11 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are completely disabled at ‘=00’ or if an ‘-0’ level is not set on the

command line, even if individual optimization flags are specified. Similarly, ‘~0g’ suppresses
many optimization passes.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each ‘-0’ level than those listed here. You can invoke GCC
with ‘-Q —-—help=optimizers’ to find out the exact set of optimizations that are enabled
at each level. See Section 3.2 [Overall Options|, page 33, for examples.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘-0’ turns on the following optimization flags:

-fauto-inc-dec
-fbranch-count-reg
-fcombine-stack-adjustments
-fcompare-elim
-fcprop-registers

-fdce

-fdefer-pop
-fdelayed-branch

-fdse

-fforward-propagate
-fguess-branch-probability
-fif-conversion
-fif-conversion2
-finline-functions-called-once
-fipa-modref

-fipa-profile
-fipa-pure-const
-fipa-reference
-fipa-reference-addressable
-fmerge-constants

162

-02

Using the GNU Compiler Collection (GCC)

-fmove-loop-invariants
-fmove-loop-stores
-fomit-frame-pointer
-freorder-blocks
-fshrink-wrap
-fshrink-wrap-separate
-fsplit-wide-types
-fssa-backprop
-fssa-phiopt
-ftree-bit-ccp
-ftree-ccp

-ftree-ch
-ftree-coalesce-vars
-ftree-copy-prop
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-pta
-ftree-scev-cprop
-ftree-sink
-ftree-slsr
-ftree-sra

-ftree-ter
-funit-at-a-time

Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to ‘-0’, this option increases
both compilation time and the performance of the generated code.

‘-02’ turns on all optimization flags specified by ‘-01’. It also turns on the
following optimization flags:

-falign-functions -falign-jumps
-falign-labels -falign-loops
-fcaller-saves

-fcode-hoisting

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations
-ffinite-loops

-fgcse -fgese-1m
-fhoist-adjacent-loads
-finline-functions
-finline-small-functions
-findirect-inlining

-fipa-bit-cp -fipa-cp -fipa-icf
-fipa-ra -fipa-sra -fipa-vrp
-fisolate-erroneous-paths-dereference
-flra-remat

-foptimize-sibling-calls
-foptimize-strlen
-fpartial-inlining

-fpeephole2
-freorder-blocks-algorithm=stc

Chapter 3: GCC Command Options 163

-03

-00

-0s

-0fast

_Og

-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop

-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fstore-merging

-fstrict-aliasing

-fthread-jumps

-ftree-builtin-call-dce
-ftree-loop-vectorize

-ftree-pre

-ftree-slp-vectorize
-ftree-switch-conversion -ftree-tail-merge
-ftree-vrp

-fvect-cost-model=very-cheap

Please note the warning under ‘~fgcse’ about invoking ‘-02’ on programs that
use computed gotos.

Optimize yet more. ‘=03’ turns on all optimizations specified by ‘-02’ and also
turns on the following optimization flags:

-fgcse-after-reload
-fipa-cp-clone -floop-interchange
-floop-unroll-and-jam
-fpeel-loops
-fpredictive-commoning
-fsplit-loops

-fsplit-paths
-ftree-loop-distribution
-ftree-partial-pre
-funswitch-loops
-fvect-cost-model=dynamic
-fversion-loops-for-strides

Reduce compilation time and make debugging produce the expected results.
This is the default.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations except those that often
increase code size:

-falign-functions -falign-jumps

-falign-labels -falign-loops

-fprefetch-loop-arrays -freorder-blocks-algorithm=stc
It also enables ‘-finline-functions’, causes the compiler to tune for code
size rather than execution speed, and performs further optimizations designed
to reduce code size.

Disregard strict standards compliance. ‘-Ofast’ enables all ‘-03’ optimiza-
tions. It also enables optimizations that are not valid for all standard-compliant
programs. It turns on ‘-ffast-math’, ‘-fallow-store-data-races’ and the
Fortran-specific ‘~-fstack-arrays’, unless ‘-fmax-stack-var-size’ is speci-
fied, and ‘~fno-protect-parens’. It turns off ‘~-fsemantic-interposition’.

Optimize debugging experience. ‘-0g’ should be the optimization level of choice
for the standard edit-compile-debug cycle, offering a reasonable level of opti-
mization while maintaining fast compilation and a good debugging experience.
It is a better choice than ‘-00’ for producing debuggable code because some
compiler passes that collect debug information are disabled at ‘-00’.

164 Using the GNU Compiler Collection (GCC)

Like ‘-00’, ‘-0g’ completely disables a number of optimization passes so that
individual options controlling them have no effect. Otherwise ‘-0g’ enables all
‘-01’ optimization flags except for those that may interfere with debugging:

-fbranch-count-reg -fdelayed-branch

-fdse -fif-conversion -fif-conversion2
-finline-functions-called-once

-fmove-loop-invariants -fmove-loop-stores -fssa-phiopt
-ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra

-0z Optimize aggressively for size rather than speed. This may increase the number
of instructions executed if those instructions require fewer bytes to encode. ‘-0z’
behaves similarly to ‘-0s’ including enabling most ‘~02’ optimizations.

4

If you use multiple ‘-0’ options, with or without level numbers, the last such option is
the one that is effective.

Options of the form ‘-fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ is ‘~fno-foo’. In the table below,
only one of the forms is listed—the one you typically use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-defer-pop
For machines that must pop arguments after a function call, always pop
the arguments as soon as each function returns. At levels ‘-01’ and higher,
‘~fdefer-pop’ is the default; this allows the compiler to let arguments
accumulate on the stack for several function calls and pop them all at once.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.

This option is enabled by default at optimization levels ‘-01’, ‘-02’, ‘-03’, ‘-0s’.

-ffp-contract=style
‘~ffp-contract=off’ disables floating-point expression contraction.
‘~ffp-contract=fast’ enables floating-point expression contraction such as
forming of fused multiply-add operations if the target has native support for
them. ‘-ffp-contract=on’ enables floating-point expression contraction if
allowed by the language standard. This is currently not implemented and
treated equal to ‘~ffp-contract=off’.

The default is ‘~ffp-contract=fast’.

-fomit-frame-pointer
Omit the frame pointer in functions that don’t need one. This avoids the
instructions to save, set up and restore the frame pointer; on many targets it
also makes an extra register available.

On some targets this flag has no effect because the standard calling sequence
always uses a frame pointer, so it cannot be omitted.

Chapter 3: GCC Command Options 165

Note that ‘~fno-omit-frame-pointer’ doesn’t guarantee the frame pointer is
used in all functions. Several targets always omit the frame pointer in leaf
functions.

Enabled by default at ‘-01’ and higher.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-foptimize-strlen
Optimize various standard C string functions (e.g. strlen, strchr or strcpy)
and their _FORTIFY_SOURCE counterparts into faster alternatives.

Enabled at levels ‘-02’, ‘~-03’.

-fno-inline
Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

-finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-findirect-inlining
Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the ‘~finline-functions’ or ‘~finline-small-functions’ options.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-finline-functions
Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’. Also enabled by ‘-fprofile-use’ and
‘~fauto-profile’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled at levels ‘-01’, ‘-02’, ‘-03’ and ‘-0s’, but not ‘-0g’.

166 Using the GNU Compiler Collection (GCC)

—-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

Enabled by default.

-fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of unused
parameters and replacement of parameters passed by reference by parameters
passed by value.

Enabled at levels ‘-02’, ~-03’ and ‘-0s’.

—finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. n is the size of functions that can be inlined
in number of pseudo instructions.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘~finline-limit=n’
option sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max—-inline-insns-auto
is set to n/2.

See below for a documentation of the individual parameters controlling inlining
and for the defaults of these parameters.

Note: there may be no value to ‘-finline-limit’ that results in default be-
havior.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fno-keep-inline-dllexport
This is a more fine-grained version of ‘~fkeep-inline-functions’, which ap-
plies only to functions that are declared using the dllexport attribute or de-
clspec. See Section 6.33 [Declaring Attributes of Functions|, page 552.

)

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C90. In C++, emit any
and all inline functions into the object file.

-fkeep-static-functions
FEmit static functions into the object file, even if the function is never used.

Chapter 3: GCC Command Options 167

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check
if a variable is referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating-point con-
stants) across compilation units.

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘~-01’, ‘-02’, ‘~-03’, ‘-0s’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~fmerge-constants’. In addition to ‘~-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating-point types. Languages like C or C++ require each
variable, including multiple instances of the same variable in recursive calls, to
have distinct locations, so using this option results in non-conforming behavior.

—-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

—-fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are deleted, which
triggers the generation of reg-moves based on the life-range analysis. This
option is effective only with ‘~fmodulo-sched’ enabled.

-fno-branch-count-reg

Disable the optimization pass that scans for opportunities to use “decrement
and branch” instructions on a count register instead of instruction sequences
that decrement a register, compare it against zero, and then branch based upon
the result. This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390. Note that the
‘~fno-branch-count-reg’ option doesn’t remove the decrement and branch
instructions from the generated instruction stream introduced by other opti-
mization passes.

The default is ‘~fbranch-count-reg’ at ‘-01’ and higher, except for ‘-0g’.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

168 Using the GNU Compiler Collection (GCC)

The default is ‘“-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section—e.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

—-fthread-jumps
Perform optimizations that check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is
redirected to either the destination of the second branch or a point immediately
following it, depending on whether the condition is known to be true or false.

Enabled at levels ‘-01’, ‘~-02’, ‘-03’, ‘-0s’.

-fsplit-wide-types
When using a type that occupies multiple registers, such as long long on a
32-bit system, split the registers apart and allocate them independently. This
normally generates better code for those types, but may make debugging more
difficult.

Enabled at levels ‘-01’, ‘~-02’, ‘-03’, ‘-0s’.

-fsplit-wide-types-early
Fully split wide types early, instead of very late. This option has no effect unless
‘~-fsplit-wide-types’ is turned on.
This is the default on some targets.

-fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE follows the
jump when the condition tested is false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps that
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.
-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations are per-
formed.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Chapter 3: GCC Command Options 169

-fgcse-1m

-fgcse-sm

-fgcse-las

Note: When compiling a program using computed gotos, a GCC extension,
you may get better run-time performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

When ‘-fgcse-1m’ is enabled, global common subexpression elimination at-
tempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when ‘~fgcse’ is enabled.

When ‘~fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass attempts to move stores out of loops.
When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload

When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to clean up redundant
spilling.

Enabled by ‘-03’, ‘~fprofile-use’ and ‘~fauto-profile’.

-faggressive-loop-optimizations

This option tells the loop optimizer to use language constraints to derive bounds
for the number of iterations of a loop. This assumes that loop code does not
invoke undefined behavior by for example causing signed integer overflows or
out-of-bound array accesses. The bounds for the number of iterations of a loop
are used to guide loop unrolling and peeling and loop exit test optimizations.
This option is enabled by default.

—-funconstrained-commons

This option tells the compiler that variables declared in common blocks (e.g.
Fortran) may later be overridden with longer trailing arrays. This prevents
certain optimizations that depend on knowing the array bounds.

—-fcrossjumping

Perform cross-jumping transformation. This transformation unifies equivalent
code and saves code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

170

Using the GNU Compiler Collection (GCC)

—-fauto-inc-dec

—-fdce

—-fdse

Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to support
this. Enabled by default at ‘-01’ and higher on architectures that support this.

Perform dead code elimination (DCE) on RTL. Enabled by default at ‘-01’
and higher.

Perform dead store elimination (DSE) on RTL. Enabled by default at ‘-01’
and higher.

-fif-conversion

Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by ‘~fif-conversion2’.

Enabled at levels ‘-01’, ‘-02’, ‘~-03’, ‘-0s’, but not with ‘-0g’.

—-fif-conversion?2

Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-01’, ‘-02’, ‘~-03’, ‘-0s’, but not with ‘-0g’.

—-fdeclone-ctor-dtor

The C++ ABI requires multiple entry points for constructors and destructors:
one for a base subobject, one for a complete object, and one for a virtual
destructor that calls operator delete afterwards. For a hierarchy with virtual
bases, the base and complete variants are clones, which means two copies of the
function. With this option, the base and complete variants are changed to be
thunks that call a common implementation.

Enabled by ‘-0s’.

-fdelete-null-pointer-checks

Assume that programs cannot safely dereference null pointers, and that no code
or data element resides at address zero. This option enables simple constant
folding optimizations at all optimization levels. In addition, other optimization
passes in GCC use this flag to control global dataflow analyses that eliminate
useless checks for null pointers; these assume that a memory access to address
zero always results in a trap, so that if a pointer is checked after it has already
been dereferenced, it cannot be null.

Note however that in some environments this assumption is not true.
Use ‘-fno-delete-null-pointer-checks’ to disable this optimization for
programs that depend on that behavior.

This option is enabled by default on most targets. On Nios II ELF, it defaults
to off. On AVR, CR16, and MSP430, this option is completely disabled.

Passes that use the dataflow information are enabled independently at different
optimization levels.

Chapter 3: GCC Command Options 171

-fdevirtualize
Attempt to convert calls to virtual functions to direct calls. This is
done both within a procedure and interprocedurally as part of indirect
inlining (‘-findirect-inlining’) and interprocedural constant propagation
(‘-fipa-cp’). Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fdevirtualize-speculatively
Attempt to convert calls to virtual functions to speculative direct calls. Based
on the analysis of the type inheritance graph, determine for a given call the
set of likely targets. If the set is small, preferably of size 1, change the call
into a conditional deciding between direct and indirect calls. The speculative
calls enable more optimizations, such as inlining. When they seem useless after
further optimization, they are converted back into original form.

-fdevirtualize-at-ltrans
Stream extra information needed for aggressive devirtualization when running
the link-time optimizer in local transformation mode. This option enables more
devirtualization but significantly increases the size of streamed data. For this
reason it is disabled by default.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-free Attempt to remove redundant extension instructions. This is especially helpful
for the x86-64 architecture, which implicitly zero-extends in 64-bit registers
after writing to their lower 32-bit half.

Enabled for Alpha, AArch64 and x86 at levels ‘-02’, ‘-03’, ‘-0s’.

-fno-lifetime-dse

In C++ the value of an object is only affected by changes within its lifetime:
when the constructor begins, the object has an indeterminate value, and
any changes during the lifetime of the object are dead when the object is
destroyed. Normally dead store elimination will take advantage of this; if your
code relies on the value of the object storage persisting beyond the lifetime
of the object, you can use this flag to disable this optimization. To preserve
stores before the constructor starts (e.g. because your operator new clears
the object storage) but still treat the object as dead after the destructor,
you can use ‘-flifetime-dse=1’. The default behavior can be explicitly
selected with ‘-flifetime-dse=2’. ‘-flifetime-dse=0’ is equivalent to
‘~fno-lifetime-dse’.

-flive-range-shrinkage
Attempt to decrease register pressure through register live range shrinkage.
This is helpful for fast processors with small or moderate size register sets.

-fira-algorithm=algorithm
Use the specified coloring algorithm for the integrated register allocator. The
algorithm argument can be ‘priority’, which specifies Chow’s priority coloring,
or ‘CB’, which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not

172 Using the GNU Compiler Collection (GCC)

implemented for all architectures, but for those targets that do support it, it is
the default because it generates better code.

-fira-region=region
Use specified regions for the integrated register allocator. The region argument
should be one of the following:

‘all’ Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.

‘mixed’ Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and
for most architectures, and is enabled by default when compiling
with optimization for speed (‘-0°, ‘=02, ...).

one Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for ‘-0s’ or ‘-00’.

-fira-hoist-pressure
Use IRA to evaluate register pressure in the code hoisting pass for decisions to
hoist expressions. This option usually results in smaller code, but it can slow
the compiler down.

This option is enabled at level ‘-0s’ for all targets.

-fira-loop-pressure
Use IRA to evaluate register pressure in loops for decisions to move loop in-
variants. This option usually results in generation of faster and smaller code on
machines with large register files (>= 32 registers), but it can slow the compiler
down.

This option is enabled at level ‘-03’ for some targets.

-fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard registers living
through a call. Each hard register gets a separate stack slot, and as a result
function stack frames are larger.

-fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-
register that does not get a hard register gets a separate stack slot, and as
a result function stack frames are larger.

-flra-remat
Enable CFG-sensitive rematerialization in LRA. Instead of loading values of
spilled pseudos, LRA tries to rematerialize (recalculate) values if it is profitable.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-01’, ~-02’, ‘~-03’, ‘-0s’, but not at ‘-0g’.

Chapter 3: GCC Command Options 173

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating-point instruction
is required.

Enabled at levels ‘-02’, ‘~-03’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-sched-interblock
Disable instruction scheduling across basic blocks, which is normally enabled
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fno-sched-spec
Disable speculative motion of non-load instructions, which is normally enabled
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fsched-pressure
Enable register pressure sensitive insn scheduling before register allocation.
This only makes sense when scheduling before register allocation is enabled,
i.e. with ‘-fschedule-insns’ or at ‘-02’ or higher. Usage of this option can
improve the generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent spills in
register allocation.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at
‘-02’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fsched-stalled-insns

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
‘~fno-sched-stalled-insns’ means that no insns are moved prematurely,
‘~fsched-stalled-insns=0’ means there is no limit on how many queued
insns can be moved prematurely. ‘-fsched-stalled-insns’ without a value
is equivalent to ‘~-fsched-stalled-insns=1".

174 Using the GNU Compiler Collection (GCC)

-fsched-stalled-insns-dep

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) are examined for a depen-
dency on a stalled insn that is a candidate for premature removal

from the queue of stalled insns. This has an effect only during
the second scheduling pass, and only if ‘-fsched-stalled-insns’
is used. ‘~fno-sched-stalled-insns-dep’ is equivalent to
‘~fsched-stalled-insns-dep=0’. ‘~fsched-stalled-insns-dep’

without a value is equivalent to ‘-fsched-stalled-insns-dep=1".

-fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling. This al-
lows motion across basic block boundaries, resulting in faster schedules. This
option is experimental, as not all machine descriptions used by GCC model the
CPU closely enough to avoid unreliable results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~-fschedule-insns2’ or at ‘-02’ or higher.

-fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors the instruction
that belongs to a schedule group. This is enabled by default when scheduling
is enabled, i.e. with ‘~fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’
or higher.

—-fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors in-
structions on the critical path. This is enabled by default when scheduling is
enabled, i.e. with ‘-fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’ or
higher.

-fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This heuristic
favors speculative instructions with greater dependency weakness. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~-fschedule-insns2’ or at ‘-02’ or higher.

—-fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors the instruc-
tion belonging to a basic block with greater size or frequency. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

-fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic favors the
instruction that is less dependent on the last instruction scheduled. This is
enabled by default when scheduling is enabled, i.e. with ‘-fschedule-insns’
or ‘-fschedule-insns2’ or at ‘-02’ or higher.

-fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic favors
the instruction that has more instructions depending on it. This is enabled

Chapter 3: GCC Command Options 175

by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

-freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop is mod-
ulo scheduled, later scheduling passes may change its schedule. Use this option
to control that behavior.

-fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the first scheduler pass.

-fselective-scheduling?2
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the second scheduler pass.

-fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of ‘-fselective-scheduling’ or
‘~fselective-scheduling?’ is turned on.

-fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless ‘~fsel-sched-pipelining’ is turned on.

-fsemantic-interposition

Some object formats, like ELF, allow interposing of symbols by the dynamic
linker. This means that for symbols exported from the DSO, the compiler can-
not perform interprocedural propagation, inlining and other optimizations in
anticipation that the function or variable in question may change. While this
feature is useful, for example, to rewrite memory allocation functions by a de-
bugging implementation, it is expensive in the terms of code quality. With
‘~fno-semantic-interposition’ the compiler assumes that if interposition
happens for functions the overwriting function will have precisely the same
semantics (and side effects). Similarly if interposition happens for variables,
the constructor of the variable will be the same. The flag has no effect for
functions explicitly declared inline (where it is never allowed for interposition
to change semantics) and for symbols explicitly declared weak.

-fshrink-wrap
Emit function prologues only before parts of the function that need it, rather
than at the top of the function. This flag is enabled by default at ‘-0’ and
higher.

-fshrink-wrap-separate
Shrink-wrap separate parts of the prologue and epilogue separately, so that
those parts are only executed when needed. This option is on by default, but
has no effect unless ‘~fshrink-wrap’ is also turned on and the target supports
this.

176 Using the GNU Compiler Collection (GCC)

-fcaller—-saves
Enable allocation of values to registers that are clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls.
Such allocation is done only when it seems to result in better code.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.

Enabled by default at ‘~01’ and higher.

-fipa-ra Use caller save registers for allocation if those registers are not used by any called
function. In that case it is not necessary to save and restore them around calls.
This is only possible if called functions are part of same compilation unit as
current function and they are compiled before it.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’, however the option is disabled if generated
code will be instrumented for profiling (‘-p’, or ‘-pg’) or if callee’s register usage
cannot be known exactly (this happens on targets that do not expose prologues
and epilogues in RTL).

-fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less stack
space, even if that makes the program slower. This option implies setting the
‘large-stack-frame’ parameter to 100 and the ‘large-stack-frame-growth’
parameter to 400.

-ftree-reassoc
Perform reassociation on trees. This flag is enabled by default at ‘-01’ and
higher.

-fcode-hoisting
Perform code hoisting. Code hoisting tries to move the evaluation of expressions
executed on all paths to the function exit as early as possible. This is especially
useful as a code size optimization, but it often helps for code speed as well.
This flag is enabled by default at ‘-02’ and higher.

-ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is enabled
by default at ‘-02’ and ‘-03’.

-ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is en-
abled by default at ‘-03’.

-ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default at ‘-01’
and higher.

Chapter 3: GCC Command Options 177

-ftree—fre
Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on all
paths leading to the redundant computation. This analysis is faster than PRE,
though it exposes fewer redundancies. This flag is enabled by default at ‘-01’
and higher.

—-ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This pass is en-
abled by default at ‘-01’ and higher.

-fhoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the loads are
from adjacent locations in the same structure and the target architecture has
a conditional move instruction. This flag is enabled by default at ‘-02’ and
higher.

-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-01’ and higher.

-fipa-pure-const
Discover which functions are pure or constant. Enabled by default at ‘-01" and
higher.

-fipa-reference
Discover which static variables do not escape the compilation unit. Enabled by
default at ‘-01’ and higher.

-fipa-reference-addressable
Discover read-only, write-only and non-addressable static variables. Enabled
by default at ‘-01" and higher.

-fipa-stack-alignment
Reduce stack alignment on call sites if possible. Enabled by default.

-fipa-pta
Perform interprocedural pointer analysis and interprocedural modification and
reference analysis. This option can cause excessive memory and compile-time
usage on large compilation units. It is not enabled by default at any optimiza-
tion level.

-fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as cold,
noreturn, static constructors or destructors) are identified. Cold functions and
loop less parts of functions executed once are then optimized for size. Enabled
by default at ‘-01’ and higher.

—-fipa-modref
Perform interprocedural mod/ref analysis. This optimization analyzes the side
effects of functions (memory locations that are modified or referenced) and

178

-fipa-cp

Using the GNU Compiler Collection (GCC)

enables better optimization across the function call boundary. This flag is
enabled by default at ‘-01’ and higher.

Perform interprocedural constant propagation. This optimization analyzes the
program to determine when values passed to functions are constants and then
optimizes accordingly. This optimization can substantially increase perfor-
mance if the application has constants passed to functions. This flag is enabled
by default at ‘-02’, ‘-0s’ and ‘-03’. It is also enabled by ‘~fprofile-use’ and
‘~fauto-profile’.

-fipa-cp-clone

-fipa-bit-

-fipa-vrp

-fipa-icf

Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation performs
function cloning when externally visible function can be called with
constant arguments. Because this optimization can create multiple
copies of functions, it may significantly increase code size (see ‘--param
ipa-cp-unit-growth=value’). This flag is enabled by default at ‘-03’. It is

also enabled by ‘-fprofile-use’ and ‘~fauto-profile’.

cp

When enabled, perform interprocedural bitwise constant propagation. This flag
is enabled by default at ‘-02’ and by ‘~fprofile-use’ and ‘~-fauto-profile’.
It requires that ‘~-fipa-cp’ is enabled.

When enabled, perform interprocedural propagation of value ranges. This flag
is enabled by default at ‘-02’. It requires that ‘~fipa-cp’ is enabled.

Perform Identical Code Folding for functions and read-only variables. The
optimization reduces code size and may disturb unwind stacks by replacing a
function by equivalent one with a different name. The optimization works more
effectively with link-time optimization enabled.

Although the behavior is similar to the Gold Linker’s ICF optimization, GCC
ICF works on different levels and thus the optimizations are not same - there

are equivalences that are found only by GCC and equivalences found only by
Gold.

This flag is enabled by default at ‘-02’ and ‘-0s’.

-flive-patching=Ilevel

Control GCC’s optimizations to produce output suitable for live-patching.

If the compiler’s optimization uses a function’s body or information extracted
from its body to optimize/change another function, the latter is called an im-
pacted function of the former. If a function is patched, its impacted functions
should be patched too.

The impacted functions are determined by the compiler’s interprocedural op-
timizations. For example, a caller is impacted when inlining a function into
its caller, cloning a function and changing its caller to call this new clone, or
extracting a function’s pureness/constness information to optimize its direct or
indirect callers, etc.

Chapter 3: GCC Command Options 179

Usually, the more IPA optimizations enabled, the larger the number of impacted
functions for each function. In order to control the number of impacted func-
tions and more easily compute the list of impacted function, IPA optimizations
can be partially enabled at two different levels.

The level argument should be one of the following:
‘inline-clone’
Only enable inlining and cloning optimizations, which includes in-
lining, cloning, interprocedural scalar replacement of aggregates
and partial inlining. As a result, when patching a function, all
its callers and its clones’ callers are impacted, therefore need to be
patched as well.
‘~flive-patching=inline-clone’ disables the following optimiza-
tion flags:
-fwhole-program -fipa-pta -fipa-reference -fipa-ra
-fipa-icf -fipa-icf-functions -fipa-icf-variables
-fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable [}
-fipa-stack-alignment -fipa-modref
‘inline-only-static’
Only enable inlining of static functions. As a result, when patching
a static function, all its callers are impacted and so need to be
patched as well.
In addition to all the flags that ‘-flive-patching=inline-clone’
disables, ‘-flive-patching=inline-only-static’ disables the
following additional optimization flags:
-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp
When ‘-flive-patching’ is specified without any value, the default value is
inline-clone.

This flag is disabled by default.
Note that ‘-flive-patching’ is not supported with link-time optimization
(‘-f1to’).

-fisolate-erroneous-paths-dereference
Detect paths that trigger erroneous or undefined behavior due to dereferencing
a null pointer. Isolate those paths from the main control flow and turn the state-
ment with erroneous or undefined behavior into a trap. This flag is enabled by
default at ‘-02’ and higher and depends on ‘-fdelete-null-pointer-checks’
also being enabled.

-fisolate-erroneous-paths-attribute
Detect paths that trigger erroneous or undefined behavior due to a null value
being used in a way forbidden by a returns_nonnull or nonnull attribute.
Isolate those paths from the main control flow and turn the statement with
erroneous or undefined behavior into a trap. This is not currently enabled, but
may be enabled by ‘=02’ in the future.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-01’
and higher.

180 Using the GNU Compiler Collection (GCC)

-ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar variables
and is enabled by default at ‘-01’ and higher, except for ‘-0g’. It requires that
‘~ftree-ccp’ is enabled.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-01’ and
higher.

-fssa-backprop
Propagate information about uses of a value up the definition chain in order to
simplify the definitions. For example, this pass strips sign operations if the sign
of a value never matters. The flag is enabled by default at ‘-01’ and higher.

-fssa-phiopt
Perform pattern matching on SSA PHI nodes to optimize conditional code.
This pass is enabled by default at ‘-01’ and higher, except for ‘-0g’.

-ftree-switch-conversion
Perform conversion of simple initializations in a switch to initializations from a
scalar array. This flag is enabled by default at ‘-02’ and higher.

-ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump
to the other. This optimization is known as tail merging or cross jumping.
This flag is enabled by default at ‘-02’ and higher. The compilation time in
this pass can be limited using ‘max-tail-merge-comparisons’ parameter and
‘max-tail-merge-iterations’ parameter.

—-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘-01’ and higher.

-ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set errno but are otherwise free of side effects. This flag is enabled
by default at ‘-02’ and higher if ‘-0s’ is not also specified.

-ffinite-loops
Assume that a loop with an exit will eventually take the exit and not loop
indefinitely. This allows the compiler to remove loops that otherwise have no
side-effects, not considering eventual endless looping as such.

This option is enabled by default at ‘=02’ for C++ with -std=c++11 or higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-01” and higher.

Chapter 3: GCC Command Options 181

-ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into a
memory location that is later overwritten by another store without any inter-
vening loads. In this case the earlier store can be deleted. This flag is enabled
by default at ‘-01’ and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag
is enabled by default at ‘-01’ and higher. It is not enabled for ‘-0s’, since it
usually increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-01’
and higher.

-ftree-loop—-linear

-floop-strip-mine

-floop-block
Perform loop nest optimizations. Same as ‘-floop-nest-optimize’. To use
this code transformation, GCC has to be configured with ‘--with-isl’ to en-
able the Graphite loop transformation infrastructure.

-fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we gener-
ate the polyhedral representation and transform it back to gimple. Using
‘~fgraphite-identity’ we can check the costs or benefits of the GIMPLE
-> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are
also performed by the code generator isl, like index splitting and dead code
elimination in loops.

-floop-nest-optimize
Enable the isl based loop nest optimizer. This is a generic loop nest optimizer
based on the Pluto optimization algorithms. It calculates a loop structure
optimized for data-locality and parallelism. This option is experimental.

-floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can be paral-
lelized. Parallelize all the loops that can be analyzed to not contain loop carried
dependences without checking that it is profitable to parallelize the loops.

-ftree-coalesce-vars
While transforming the program out of the SSA representation, attempt to
reduce copying by coalescing versions of different user-defined variables, instead
of just compiler temporaries. This may severely limit the ability to debug an
optimized program compiled with ‘~fno-var-tracking-assignments’. In the
negated form, this flag prevents SSA coalescing of user variables. This option is
enabled by default if optimization is enabled, and it does very little otherwise.

—-ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to branch-less
equivalents. The intent is to remove control-flow from the innermost loops in

182 Using the GNU Compiler Collection (GCC)

order to improve the ability of the vectorization pass to handle these loops.
This is enabled by default if vectorization is enabled.

-ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on big loop
bodies and allow further loop optimizations, like parallelization or vectorization,
to take place. For example, the loop

pD0oI=1, N
A(I) = B(I) + C
D(I) = E(I) = F
ENDDO

is transformed to

DOI=1, N

A(I) =B(I) +C
ENDDO
pD0oI=1, N

D(I) = E(I) x F
ENDDO

This flag is enabled by default at ‘-03’. It is also enabled by ‘~fprofile-use’
and ‘-fauto-profile’.

-ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with calls
to a library. This flag is enabled by default at ‘-02’ and higher, and by
‘~fprofile-use’ and ‘~fauto-profile’.
This pass distributes the initialization loops and generates a call to memset
zero. For example, the loop

bD0OI=1, N

A(I) =0

B(I) = A(I) + I
ENDDO

is transformed to

DOI =1, N
A(I) =0
ENDDO
DOI=1, N
B(I) = A(D) + I
ENDDO

and the initialization loop is transformed into a call to memset zero. This
flag is enabled by default at ‘-03’. It is also enabled by ‘~fprofile-use’ and
‘~fauto-profile’.

-floop-interchange
Perform loop interchange outside of graphite. This flag can improve cache per-
formance on loop nest and allow further loop optimizations, like vectorization,
to take place. For example, the loop
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
clil[j]1 = c[il[j] + alil [k1*blk][jl;

is transformed to

Chapter 3:

GCC Command Options 183

for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
c[i1[j] = c[i1[j] + alil[k1*b[k][j]1;
This flag is enabled by default at ‘-03’. It is also enabled by ‘~-fprofile-use’
and ‘~fauto-profile’.

-floop-unroll-and-jam

Apply unroll and jam transformations on feasible loops. In a loop nest this un-
rolls the outer loop by some factor and fuses the resulting multiple inner loops.
This flag is enabled by default at ‘-03’. It is also enabled by ‘~-fprofile-use’
and ‘~fauto-profile’.

-ftree-loop-im

Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to non-
trivial sequences of insns). With ‘~funswitch-loops’ it also moves operands
of conditions that are invariant out of the loop, so that we can use just trivial
invariantness analysis in loop unswitching. The pass also includes store motion.

-ftree-loop-ivcanon

Create a canonical counter for number of iterations in loops for which deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-ftree-scev-cprop

-fivopts

Perform final value replacement. If a variable is modified in a loop in such a
way that its value when exiting the loop can be determined using only its initial
value and the number of loop iterations, replace uses of the final value by such a
computation, provided it is sufficiently cheap. This reduces data dependencies
and may allow further simplifications. Enabled by default at ‘-01’ and higher.

Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-parallelize-loops=n

Parallelize loops, i.e., split their iteration space to run in n threads. This is
only possible for loops whose iterations are independent and can be arbitrarily
reordered. The optimization is only profitable on multiprocessor machines, for
loops that are CPU-intensive, rather than constrained e.g. by memory band-
width. This option implies ‘-pthread’, and thus is only supported on targets
that have support for ‘-pthread’.

-ftree-pta

Perform function-local points-to analysis on trees. This flag is enabled by de-
fault at ‘-01’ and higher, except for ‘-0g’.

-ftree-sra

Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-01’ and higher, except for ‘-0g’.

184 Using the GNU Compiler Collection (GCC)

-fstore-merging
Perform merging of narrow stores to consecutive memory addresses. This pass
merges contiguous stores of immediate values narrower than a word into fewer
wider stores to reduce the number of instructions. This is enabled by default
at ‘-02’ and higher as well as ‘-0s’.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-01’ and higher.

-ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related ex-
pressions involving multiplications and replaces them by less expensive calcu-
lations when possible. This is enabled by default at ‘-01’ and higher.

-ftree-vectorize
Perform vectorization on trees. This flag enables ‘~ftree-loop-vectorize’
and ‘-ftree-slp-vectorize’ if not explicitly specified.

-ftree-loop-vectorize
Perform loop vectorization on trees. This flag is enabled by default at ‘-02’
and by ‘~ftree-vectorize’, ‘-fprofile-use’, and ‘~fauto-profile’.

-ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
‘-02” and by ‘-ftree-vectorize’, ‘-fprofile-use’, and ‘-fauto-profile’.

—-ftrivial-auto-var-init=choice

Initialize automatic variables with either a pattern or with zeroes to increase
the security and predictability of a program by preventing uninitialized
memory disclosure and use. GCC still considers an automatic variable
that doesn’t have an explicit initializer as uninitialized, ‘-Wuninitialized’
and ‘-Wanalyzer-use-of-uninitialized-value’ will still report warning
messages on such automatic variables. With this option, GCC will also
initialize any padding of automatic variables that have structure or union types
to zeroes. However, the current implementation cannot initialize automatic
variables that are declared between the controlling expression and the first
case of a switch statement. Using ‘-Wtrivial-auto-var-init’ to report all
such cases.

The three values of choice are:

e ‘uninitialized’ doesn’t initialize any automatic variables. This is C and
C++’s default.

e ‘pattern’ Initialize automatic variables with values which will likely trans-
form logic bugs into crashes down the line, are easily recognized in a crash
dump and without being values that programmers can rely on for useful
program semantics. The current value is byte-repeatable pattern with byte

Chapter 3: GCC Command Options 185

"OxFE". The values used for pattern initialization might be changed in the
future.

e ‘zero’ Initialize automatic variables with zeroes.

The default is ‘uninitialized’.

You can control this behavior for a specific variable by using the variable at-
tribute uninitialized (see Section 6.34 [Variable Attributes|, page 618).

-fvect-cost-model=model

Alter the cost model used for vectorization. The model argument should be
one of ‘unlimited’, ‘dynamic’, ‘cheap’ or ‘very-cheap’. With the ‘unlimited’
model the vectorized code-path is assumed to be profitable while with the
‘dynamic’ model a runtime check guards the vectorized code-path to enable
it only for iteration counts that will likely execute faster than when executing
the original scalar loop. The ‘cheap’ model disables vectorization of loops where
doing so would be cost prohibitive for example due to required runtime checks
for data dependence or alignment but otherwise is equal to the ‘dynamic’ model.
The ‘very-cheap’ model only allows vectorization if the vector code would en-
tirely replace the scalar code that is being vectorized. For example, if each
iteration of a vectorized loop would only be able to handle exactly four itera-
tions of the scalar loop, the ‘very-cheap’ model would only allow vectorization
if the scalar iteration count is known to be a multiple of four.

The default cost model depends on other optimization flags and is either
‘dynamic’ or ‘cheap’.
-fsimd-cost-model=model

Alter the cost model used for vectorization of loops marked with the
OpenMP simd directive. The model argument should be one of ‘unlimited’,
‘dynamic’, ‘cheap’. All values of model have the same meaning as
described in ‘-fvect-cost-model’ and by default a cost model defined with
‘~fvect-cost-model’ is used.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘-02” and higher. Null pointer
check elimination is only done if ‘~-fdelete-null-pointer-checks’ is enabled.

-fsplit-paths
Split paths leading to loop backedges. This can improve dead code elimination
and common subexpression elimination. This is enabled by default at ‘-03’ and
above.

-fsplit-ivs—-in-unroller
Enables expression of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

A combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However, that is not reliable in cases where the loop body is more complicated

186 Using the GNU Compiler Collection (GCC)

than a single basic block. It also does not work at all on some architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some local variables
when unrolling a loop, which can result in superior code.

This optimization is enabled by default for PowerPC targets, but disabled by
default otherwise.

—-fpartial-inlining
Inline parts of functions. This option has any effect only when inlining itself
is turned on by the ‘-finline-functions’ or ‘-finline-small-functions’
options.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations (espe-
cially memory loads and stores) performed in previous iterations of loops.

This option is enabled at level ‘-03’. It is also enabled by ‘~fprofile-use’ and
‘~fauto-profile’.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

Disabled at level ‘-0s’.

-fno-printf-return-value

Do not substitute constants for known return value of formatted output func-
tions such as sprintf, snprintf, vsprintf, and vsnprintf (but not printf
of fprintf). This transformation allows GCC to optimize or even eliminate
branches based on the known return value of these functions called with ar-
guments that are either constant, or whose values are known to be in a range
that makes determining the exact return value possible. For example, when
‘~fprintf-return-value’ is in effect, both the branch and the body of the if
statement (but not the call to snprint) can be optimized away when i is a
32-bit or smaller integer because the return value is guaranteed to be at most
8.

char buf[9];
if (snprintf (buf, "%08x", i) >= sizeof buf)

The ‘-fprintf-return-value’ option relies on other optimizations and
yields best results with ‘-02’ and above. It works in tandem with
the ‘-Wformat-overflow’ and ‘-Wformat-truncation’ options. The
‘~fprintf-return-value’ option is enabled by default.

Chapter 3: GCC Command Options 187

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’,
‘-03’, ‘-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC uses heuristics to guess branch probabilities if they are not provided
by profiling feedback (‘-fprofile-arcs’). These heuristics are based on the
control flow graph. If some branch probabilities are specified by __builtin_
expect, then the heuristics are used to guess branch probabilities for the rest
of the control flow graph, taking the __builtin_expect info into account. The
interactions between the heuristics and __builtin_expect can be complex,
and in some cases, it may be useful to disable the heuristics so that the effects
of __builtin_expect are easier to understand.

It is also possible to specify expected probability of the expression with __
builtin_expect_with_probability built-in function.

The default is ‘~-fguess-branch-probability’ at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

—-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘~-01’, ‘-02’, ‘~-03’, ‘-0s’.

-freorder-blocks-algorithm=algorithm
Use the specified algorithm for basic block reordering. The algorithm argument
can be ‘simple’, which does not increase code size (except sometimes due to
secondary effects like alignment), or ‘stc’, the “software trace cache” algorithm,
which tries to put all often executed code together, minimizing the number of
branches executed by making extra copies of code.

The default is ‘simple’ at levels ‘-01’, ‘-0s’, and ‘stc’ at levels ‘-02’, ‘-03".

—-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and ‘.o’ files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling or unwind tables (on targets using setjump/longjump or target specific
scheme), for linkonce sections, for functions with a user-defined section at-
tribute and on any architecture that does not support named sections. When
‘~fsplit-stack’ is used this option is not enabled by default (to avoid linker
errors), but may be enabled explicitly (if using a working linker).

Enabled for x86 at levels ‘-02’, ‘-03’, ‘-0s’.

188 Using the GNU Compiler Collection (GCC)

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

This option isn’t effective unless you either provide profile feedback (see
‘~fprofile-arcs’ for details) or manually annotate functions with hot or
cold attributes (see Section 6.33.1 [Common Function Attributes|, page 553).

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to the lan-
guage being compiled. For C (and C++), this activates optimizations based on
the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:
union a_union {

int i;

double d;

};

int £O {
union a_union t;
t.d = 3.0;
return t.i;

}
The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘~-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above works as expected. See
Section 4.9 [Structures unions enumerations and bit-fields implementation],
page 517. However, this code might not:

int £ {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Similarly, access by taking the address, casting the resulting pointer and deref-
erencing the result has undefined behavior, even if the cast uses a union type,
e.g.
int £() {
double d = 3.0;

return ((union a_union *) &d)->i;

}
The ‘-fstrict-aliasing’ option is enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

Chapter 3: GCC Command Options 189

-fipa-strict-aliasing
Controls whether rules of ‘~fstrict-aliasing’ are applied across function
boundaries. Note that if multiple functions gets inlined into a single func-
tion the memory accesses are no longer considered to be crossing a function
boundary.

The ‘~fipa-strict-aliasing’ option is enabled by default and is effective only
in combination with ‘-fstrict-aliasing’.

-falign-functions

—-falign-functions=n

-falign-functions=n:m

-falign-functions=n:m:n2

-falign-functions=n:m:n2:m2
Align the start of functions to the next power-of-two greater than or equal to
n, skipping up to m-1 bytes. This ensures that at least the first m bytes of
the function can be fetched by the CPU without crossing an n-byte alignment
boundary.

If m is not specified, it defaults to n.

Examples: ‘-falign-functions=32’ aligns functions to the next 32-byte
boundary, ‘-falign-functions=24" aligns to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less, ‘-falign-functions=32:7’
aligns to the next 32-byte boundary only if this can be done by skipping 6
bytes or less.

The second pair of n2:m2 values allows you to specify a secondary alignment:
‘~falign-functions=64:7:32:3" aligns to the next 64-byte boundary if this
can be done by skipping 6 bytes or less, otherwise aligns to the next 32-byte
boundary if this can be done by skipping 2 bytes or less. If m2 is not specified,
it defaults to n2.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

‘~fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions are not aligned.

If n is not specified or is zero, use a machine-dependent default. The maximum
allowed n option value is 65536.

Enabled at levels ‘-02’, ‘~-03’.

-flimit-function-alignment
If this option is enabled, the compiler tries to avoid unnecessarily overaligning
functions. It attempts to instruct the assembler to align by the amount speci-
fied by ‘-falign-functions’, but not to skip more bytes than the size of the
function.

190

Using the GNU Compiler Collection (GCC)

-falign-labels
-falign-labels=n
-falign-labels=n:m
-falign-labels=n:m:n2
-falign-labels=n:m:n2:m2

Align all branch targets to a power-of-two boundary.

Parameters of this option are analogous to the ‘-falign-functions’ option.
‘~fno-align-labels’ and ‘-falign-labels=1’ are equivalent and mean that
labels are not aligned.

If ‘~falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’ meaning no alignment. The maximum allowed n option value
is 65536.

Enabled at levels ‘-02’, ‘~-03’.

-falign-loops
—-falign-loops=n
-falign-loops=n:m
-falign-loops=n:m:n2
-falign-loops=n:m:n2:m2

Align loops to a power-of-two boundary. If the loops are executed many times,
this makes up for any execution of the dummy padding instructions.

If ‘-falign-labels’ is greater than this value, then its value is used instead.

Parameters of this option are analogous to the ‘~-falign-functions’ option.
‘-fno-align-loops’ and ‘-falign-loops=1’" are equivalent and mean that
loops are not aligned. The maximum allowed n option value is 65536.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘~-02’, ‘-03’.

-falign-jumps
-falign-jumps=n
-falign-jumps=n:m
-falign-jumps=n:m:n2
-falign-jumps=n:m:n2:m2

Align branch targets to a power-of-two boundary, for branch targets where the
targets can only be reached by jumping. In this case, no dummy operations
need be executed.

If ‘-falign-labels’ is greater than this value, then its value is used instead.

Parameters of this option are analogous to the ‘-falign-functions’ option.
‘-fno-align-jumps’ and ‘-falign-jumps=1’" are equivalent and mean that
loops are not aligned.

If n is not specified or is zero, use a machine-dependent default. The maximum
allowed n option value is 65536.

Enabled at levels ‘--02’, ‘-03’.

Chapter 3: GCC Command Options 191

—-fno-allocation-dce

Do not remove unused C++ allocations in dead code elimination.

-fallow-store-data-races

Allow the compiler to perform optimizations that may introduce new data races
on stores, without proving that the variable cannot be concurrently accessed by
other threads. Does not affect optimization of local data. It is safe to use this
option if it is known that global data will not be accessed by multiple threads.
Examples of optimizations enabled by ‘-fallow-store-data-races’ include
hoisting or if-conversions that may cause a value that was already in memory to
be re-written with that same value. Such re-writing is safe in a single threaded
context but may be unsafe in a multi-threaded context. Note that on some
processors, if-conversions may be required in order to enable vectorization.

Enabled at level ‘-0fast’.

—funit-at-a-time

This option is left for compatibility reasons. ‘-funit-at-a-time’ has no
effect, while ‘~fno-unit-at-a-time’ implies ‘~fno-toplevel-reorder’ and
‘~fno-section-anchors’.

Enabled by default.

-fno-toplevel-reorder

-fweb

Do not reorder top-level functions, variables, and asm statements. Output them
in the same order that they appear in the input file. When this option is
used, unreferenced static variables are not removed. This option is intended to
support existing code that relies on a particular ordering. For new code, it is
better to use attributes when possible.

‘~-ftoplevel-reorder’ is the default at ‘-01’ and higher, and also
at ‘-00" if ‘-fsection-anchors’ is explicitly requested. Additionally
‘-fno-toplevel-reorder’ implies ‘~fno-section-anchors’.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a “home
register”.

Enabled by default with ‘~funroll-loops’.

-fwhole-program

-flto[=n]

Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of main and
those merged by attribute externally_visible become static functions and
in effect are optimized more aggressively by interprocedural optimizers.

This option should not be used in combination with ‘-fl1to’. Instead relying
on a linker plugin should provide safer and more precise information.

This option runs the standard link-time optimizer. When invoked with source
code, it generates GIMPLE (one of GCC’s internal representations) and writes

192

Using the GNU Compiler Collection (GCC)

it to special ELF sections in the object file. When the object files are linked
together, all the function bodies are read from these ELF sections and instan-
tiated as if they had been part of the same translation unit.

To use the link-time optimizer, ‘-f1to’ and optimization options should be
specified at compile time and during the final link. It is recommended that you
compile all the files participating in the same link with the same options and
also specify those options at link time. For example:

gcc -c¢ -02 -flto foo.c

gcc -c¢ -02 -flto bar.c

gcc -o myprog -flto -02 foo.o bar.o
The first two invocations to GCC save a bytecode representation of GIMPLE
into special ELF sections inside ‘foo.o’ and ‘bar.o’. The final invocation reads
the GIMPLE bytecode from ‘foo.o’ and ‘bar.o’, merges the two files into a
single internal image, and compiles the result as usual. Since both ‘foo.0’
and ‘bar.o’ are merged into a single image, this causes all the interprocedural
analyses and optimizations in GCC to work across the two files as if they were a
single one. This means, for example, that the inliner is able to inline functions
in ‘bar.o’ into functions in ‘foo.o’ and vice-versa.

Another (simpler) way to enable link-time optimization is:

gcc -o myprog -flto -02 foo.c bar.c
The above generates bytecode for ‘foo.c’ and ‘bar.c’, merges them together
into a single GIMPLE representation and optimizes them as usual to produce
‘myprog’.
The important thing to keep in mind is that to enable link-time optimizations
you need to use the GCC driver to perform the link step. GCC automatically
performs link-time optimization if any of the objects involved were compiled
with the ‘-fl1to’ command-line option. You can always override the automatic
decision to do link-time optimization by passing ‘-fno-1to’ to the link com-
mand.

To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know what
functions and variables can be accessed by libraries and runtime outside
of the link-time optimized unit. When supported by the linker, the linker
plugin (see ‘~fuse-linker-plugin’) passes information to the compiler about
used and externally visible symbols. When the linker plugin is not available,
‘~fwhole-program’ should be used to allow the compiler to make these
assumptions, which leads to more aggressive optimization decisions.

When a file is compiled with ‘-f1to’ without ‘~fuse-linker-plugin’, the gen-
erated object file is larger than a regular object file because it contains GIMPLE
bytecodes and the usual final code (see ‘-ffat-lto-objects’). This means
that object files with LTO information can be linked as normal object files; if
‘~fno-1to’ is passed to the linker, no interprocedural optimizations are applied.
Note that when ‘-fno-fat-1to-objects’ is enabled the compile stage is faster
but you cannot perform a regular, non-LTO link on them.

When producing the final binary, GCC only applies link-time optimizations to
those files that contain bytecode. Therefore, you can mix and match object

Chapter 3: GCC Command Options 193

files and libraries with GIMPLE bytecodes and final object code. GCC auto-
matically selects which files to optimize in LTO mode and which files to link
without further processing.

Generally, options specified at link time override those specified at compile
time, although in some cases GCC attempts to infer link-time options from the
settings used to compile the input files.

If you do not specify an optimization level option ‘-0’ at link time, then GCC
uses the highest optimization level used when compiling the object files. Note
that it is generally ineffective to specify an optimization level option only at
link time and not at compile time, for two reasons. First, compiling without
optimization suppresses compiler passes that gather information needed for
effective optimization at link time. Second, some early optimization passes can
be performed only at compile time and not at link time.

There are some code generation flags preserved by GCC when generating byte-
codes, as they need to be used during the final link. Currently, the following
options and their settings are taken from the first object file that explicitly speci-
fies them: ‘~fcommon’, ‘~fexceptions’, ‘~fnon-call-exceptions’, ‘-fgnu-tm’
and all the ‘-m’ target flags.

The following options ‘~fPIC’, ‘~fpic’, ‘-fpie’ and ‘~-fPIE’ are combined based
on the following scheme:

‘-fPIC’ + ‘-fpic’ = ‘-fpic’

¢-fPIC’ + ‘-fno-pic’ = ‘-fno-pic’
‘~fpic/-fPIC’ + (no option) = (no option)
‘-fPIC’ + ‘-fPIE’ = ‘-fPIE’

‘-fpic’ + ‘-fPIE’ = ‘-fpie’

¢-fPIC/-fpic’ + ‘-fpie’ = ‘-fpie’

Certain ABI-changing flags are required to match in all compilation units, and
trying to override this at link time with a conflicting value is ignored. This
includes options such as ‘~freg-struct-return’ and ‘-fpcc-struct-return’.

Other options such as ‘-ffp-contract’, ‘~-fno-strict-overflow’, ‘~fwrapv’,

‘~fno-trapv’ or ‘-fno-strict-aliasing’ are passed through to the
link stage and merged conservatively for conflicting translation units.
Specifically ‘-fno-strict-overflow’, ‘-fwrapv’ and ‘-fno-trapv’ take
precedence; and for example ‘-ffp-contract=off’ takes precedence over
‘~ffp-contract=fast’. You can override them at link time.

Diagnostic options such as ‘-Wstringop-overflow’ are passed through to the
link stage and their setting matches that of the compile-step at function granu-
larity. Note that this matters only for diagnostics emitted during optimization.
Note that code transforms such as inlining can lead to warnings being enabled
or disabled for regions if code not consistent with the setting at compile time.

When you need to pass options to the assembler via ‘-Wa’ or ‘-Xassembler’
make sure to either compile such translation units with ‘-fno-1to’ or con-
sistently use the same assembler options on all translation units. You can
alternatively also specify assembler options at LTO link time.

To enable debug info generation you need to supply ‘-g’ at compile time. If
any of the input files at link time were built with debug info generation enabled

194

Using the GNU Compiler Collection (GCC)

the link will enable debug info generation as well. Any elaborate debug info
settings like the dwarf level ‘~-gdwarf-5’ need to be explicitly repeated at the
linker command line and mixing different settings in different translation units
is discouraged.

If LTO encounters objects with C linkage declared with incompatible types in
separate translation units to be linked together (undefined behavior according
to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still
undefined at run time. Similar diagnostics may be raised for other languages.

Another feature of LTO is that it is possible to apply interprocedural optimiza-
tions on files written in different languages:

gcc -c¢ —-flto foo.c

g++ -c —-flto bar.cc

gfortran -c -flto baz.f90

g++ -o myprog -flto -03 foo.o bar.o baz.o -lgfortran
Notice that the final link is done with g++ to get the C++ runtime libraries and
‘~lgfortran’ is added to get the Fortran runtime libraries. In general, when
mixing languages in LTO mode, you should use the same link command options
as when mixing languages in a regular (non-LTO) compilation.

If object files containing GIMPLE bytecode are stored in a library archive, say
‘libfoo.a’, it is possible to extract and use them in an LTO link if you are
using a linker with plugin support. To create static libraries suitable for LTO,
use gcc—ar and gcc-ranlib instead of ar and ranlib; to show the symbols
of object files with GIMPLE bytecode, use gcc-nm. Those commands require
that ar, ranlib and nm have been compiled with plugin support. At link time,
use the flag ‘~fuse-linker-plugin’ to ensure that the library participates in
the LTO optimization process:
gcc -o myprog -02 -flto -fuse-linker-plugin a.o b.o -1lfoo

With the linker plugin enabled, the linker extracts the needed GIMPLE files
from ‘libfoo.a’ and passes them on to the running GCC to make them part
of the aggregated GIMPLE image to be optimized.

If you are not using a linker with plugin support and/or do not enable the linker
plugin, then the objects inside ‘libfoo.a’ are extracted and linked as usual,
but they do not participate in the LTO optimization process. In order to make
a static library suitable for both LTO optimization and usual linkage, compile
its object files with ‘~f1to’ ‘-ffat-lto-objects’.

Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is pos-
sible to combine ‘-fl1to’ and ‘-fwhole-program’ to allow the interprocedural
optimizers to use more aggressive assumptions which may lead to improved op-
timization opportunities. Use of ‘~fwhole-program’ is not needed when linker
plugin is active (see ‘-~fuse-linker-plugin’).

The current implementation of LTO makes no attempt to generate bytecode
that is portable between different types of hosts. The bytecode files are ver-
sioned and there is a strict version check, so bytecode files generated in one
version of GCC do not work with an older or newer version of GCC.

Chapter 3: GCC Command Options 195

Link-time optimization does not work well with generation of debugging infor-
mation on systems other than those using a combination of ELF and DWARF.

If you specify the optional n, the optimization and code generation done at link
time is executed in parallel using n parallel jobs by utilizing an installed make
program. The environment variable MAKE may be used to override the program
used.

You can also specify ‘~flto=jobserver’ to use GNU make’s job server mode to
determine the number of parallel jobs. This is useful when the Makefile calling
GCC is already executing in parallel. You must prepend a ‘+’ to the command
recipe in the parent Makefile for this to work. This option likely only works if
MAKE is GNU make. Even without the option value, GCC tries to automatically
detect a running GNU make’s job server.

Use ‘-flto=auto’ to use GNU make’s job server, if available, or otherwise fall
back to autodetection of the number of CPU threads present in your system.

-flto-partition=alg

Specify the partitioning algorithm used by the link-time optimizer. The value
is either ‘1tol’ to specify a partitioning mirroring the original source files or
‘balanced’ to specify partitioning into equally sized chunks (whenever possi-
ble) or ‘max’ to create new partition for every symbol where possible. Specifying
‘none’ as an algorithm disables partitioning and streaming completely. The de-
fault value is ‘balanced’. While ‘1to1’ can be used as an workaround for various
code ordering issues, the ‘max’ partitioning is intended for internal testing only.
The value ‘one’ specifies that exactly one partition should be used while the
value ‘none’ bypasses partitioning and executes the link-time optimization step
directly from the WPA phase.

-flto-compression-level=n

This option specifies the level of compression used for intermediate language
written to LTO object files, and is only meaningful in conjunction with LTO
mode (‘-f1to’). GCC currently supports two LTO compression algorithms.
For zstd, valid values are 0 (no compression) to 19 (maximum compression),
while zlib supports values from 0 to 9. Values outside this range are clamped
to either minimum or maximum of the supported values. If the option is not
given, a default balanced compression setting is used.

-fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This option
relies on plugin support in the linker, which is available in gold or in GNU 1d
2.21 or newer.

This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing more
code to the link-time optimizer. This information specifies what symbols can be
accessed externally (by non-LTO object or during dynamic linking). Resulting
code quality improvements on binaries (and shared libraries that use hidden
visibility) are similar to ‘-fwhole-program’. See ‘-flto’ for a description of
the effect of this flag and how to use it.

196

Using the GNU Compiler Collection (GCC)

This option is enabled by default when LTO support in GCC is enabled and
GCC was configured for use with a linker supporting plugins (GNU 1d 2.21 or
newer or gold).

-ffat-1to-objects

Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with ‘-f1to’ and is ignored
at link time.

‘~fno-fat-lto-objects’ improves compilation time over plain LTO, but re-
quires the complete toolchain to be aware of LTO. It requires a linker with linker
plugin support for basic functionality. Additionally, nm, ar and ranlib need
to support linker plugins to allow a full-featured build environment (capable of
building static libraries etc). GCC provides the gcc-ar, gcc—nm, gcc-ranlib
wrappers to pass the right options to these tools. With non fat LTO makefiles
need to be modified to use them.

Note that modern binutils provide plugin auto-load mechanism. Installing the
linker plugin into ‘$libdir/bfd-plugins’ has the same effect as usage of the
command wrappers (gcc-ar, gcc—nm and gcc-ranlib).

The default is ‘~fno-fat-1lto-objects’ on targets with linker plugin support.

-fcompare-elim

After register allocation and post-register allocation instruction splitting, iden-
tify arithmetic instructions that compute processor flags similar to a comparison
operation based on that arithmetic. If possible, eliminate the explicit compar-
ison operation.

This pass only applies to certain targets that cannot explicitly represent the
comparison operation before register allocation is complete.

Enabled at levels ‘-01’, ‘~-02’, ‘-03’, ‘-0s’.

-fcprop-registers

After register allocation and post-register allocation instruction splitting, per-
form a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Enabled at levels ‘-01’, ‘~-02’, ‘-03’, ‘-0s’.

—fprofile-correction

Profiles collected using an instrumented binary for multi-threaded programs
may be inconsistent due to missed counter updates. When this option is spec-
ified, GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.

This option is enabled by ‘-fauto-profile’.

-fprofile-partial-training

With -fprofile-use all portions of programs not executed during train run
are optimized agressively for size rather than speed. In some cases it is not
practical to train all possible hot paths in the program. (For example, program
may contain functions specific for a given hardware and trianing may not cover

Chapter 3: GCC Command Options 197

all hardware configurations program is run on.) With -fprofile-partial-
training profile feedback will be ignored for all functions not executed during
the train run leading them to be optimized as if they were compiled without
profile feedback. This leads to better performance when train run is not repre-
sentative but also leads to significantly bigger code.

-fprofile-use
-fprofile-use=path
Enable profile feedback-directed optimizations, and the following optimizations,
many of which are generally profitable only with profile feedback available:
-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-reorder-functions

Before you can use this option, you must first generate profiling information.

See Section 3.12 [Instrumentation Options|, page 234, for information about
the ‘~fprofile-generate’ option.

By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
‘~Wno-error=coverage-mismatch’. Note this may result in poorly optimized
code. Additionally, by default, GCC also emits a warning message if the
feedback profiles do not exist (see ‘~Wmissing-profile’).

If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

-fauto-profile
-fauto-profile=path
Enable sampling-based feedback-directed optimizations, and the following op-
timizations, many of which are generally profitable only with profile feedback
available:
-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-correction

path is the name of a file containing AutoFDO profile information. If omitted,
it defaults to ‘fbdata.afdo’ in the current directory.

Producing an AutoFDO profile data file requires running your program with the
perf utility on a supported GNU/Linux target system. For more information,
see https://perf.wiki.kernel.org/.

E.g.

perf record -e br_inst_retired:near_taken -b -o perf.data \
—-- your_program

https://perf.wiki.kernel.org/

198 Using the GNU Compiler Collection (GCC)

Then use the create_gcov tool to convert the raw profile data to a format
that can be used by GCC. You must also supply the unstripped binary for your
program to this tool. See https://github.com/google/autofdo.

E.g.

create_gcov --binary=your_program.unstripped --profile=perf.data \
--gcov=profile.afdo

The following options control compiler behavior regarding floating-point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating-point variables in registers, and inhibit other options that
might change whether a floating-point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fexcess-precision=style

This option allows further control over excess precision on machines where
floating-point operations occur in a format with more precision or range
than the IEEE standard and interchange floating-point types. By default,
‘~fexcess-precision=fast’ is in effect; this means that operations may
be carried out in a wider precision than the types specified in the source
if that would result in faster code, and it is unpredictable when rounding
to the types specified in the source code takes place. When compiling C, if
‘~fexcess-precision=standard’ is specified then excess precision follows
the rules specified in ISO C99; in particular, both casts and assignments
cause values to be rounded to their semantic types (whereas ‘~ffloat-store’
only affects assignments). This option is enabled by default for C if a strict
conformance option such as ‘-std=c99” is used. ‘-ffast-math’ enables
‘~fexcess-precision=fast’ by default regardless of whether a strict
conformance option is used.

‘~-fexcess-precision=standard’ is not implemented for languages other than
C. On the x86, it has no effect if ‘-mfpmath=sse’ or ‘-mfpmath=sse+387’ is
specified; in the former case, IEEE semantics apply without excess precision,
and in the latter, rounding is unpredictable.

-ffast-math
Sets the options ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~ffinite-math-only’, ‘-fno-rounding-math’, ‘-fno-signaling-nans’,
‘~fcx-limited-range’ and ‘-fexcess-precision=fast’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.

3

This option is not turned on by any ‘-0’ option besides ‘~0fast’ since it can
result in incorrect output for programs that depend on an exact implementation
of IEEE or ISO rules/specifications for math functions. It may, however, yield

https://github.com/google/autofdo

Chapter 3: GCC Command Options 199

faster code for programs that do not require the guarantees of these specifica-
tions.

-fno-math-errno
Do not set errno after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math
error handling may want to use this flag for speed while maintaining IEEE
arithmetic compatibility.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option is not turned on by any ‘-0’ option since it can result in incor-
rect output for programs that depend on an exact implementation of IEEE
or ISO rules/specifications for math functions. It may, however, yield faster
code for programs that do not require the guarantees of these specifications.
Enables ‘~fno-signed-zeros’, ‘~-fno-trapping-math’, ‘-fassociative-math’
and ‘-freciprocal-math’.

The default is ‘-fno-unsafe-math-optimizations’.

-fassociative-math

Allow re-association of operands in series of floating-point operations. This vi-
olates the ISO C and C++ language standard by possibly changing computation
result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs
and inhibit or create underflow or overflow (and thus cannot be used on code
that relies on rounding behavior like (x + 2%xx52) - 2*x52. May also reorder
floating-point comparisons and thus may not be used when ordered compar-
isons are required. This option requires that both ‘-fno-signed-zeros’ and
‘~fno-trapping-math’ be in effect. Moreover, it doesn’t make much sense with
‘~frounding-math’. For Fortran the option is automatically enabled when both
‘-fno-signed-zeros’ and ‘~fno-trapping-math’ are in effect.

The default is ‘-fno-associative-math’.

-freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by the value if
this enables optimizations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note

200 Using the GNU Compiler Collection (GCC)

that this loses precision and increases the number of flops operating on the
value.

The default is ‘~fno-reciprocal-math’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘-fno-finite-math-only’.

-fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the signedness of
zero. IEEE arithmetic specifies the behavior of distinct +0.0 and —0.0 values,
which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even
with ‘-ffinite-math-only’). This option implies that the sign of a zero result
isn’t significant.

The default is ‘-fsigned-zeros’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inexact
result and invalid operation. This option requires that ‘-fno-signaling-nans’
be in effect. Setting this option may allow faster code if one relies on “non-stop”
IEEE arithmetic, for example.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

—-frounding-math

Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating-point expressions at compile time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command-line option will be used to specify the default state for FENV_ACCESS.

Chapter 3: GCC Command Options 201

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘~ftrapping-math’.

This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fno-fp-int-builtin-inexact
Do not allow the built-in functions ceil, floor, round and trunc, and their
float and long double variants, to generate code that raises the “inexact”
floating-point exception for noninteger arguments. ISO C99 and C11 allow
these functions to raise the “inexact” exception, but ISO/IEC TS 18661-1:2014,
the C bindings to IEEE 754-2008, as integrated into ISO C2X, does not allow
these functions to do so.

The default is ‘~ffp-int-builtin-inexact’, allowing the exception to be
raised, unless C2X or a later C standard is selected. This option does nothing
unless ‘~-ftrapping-math’ is in effect.

Even if ‘~fno-fp-int-builtin-inexact’ is used, if the functions generate a
call to a library function then the “inexact” exception may be raised if the
library implementation does not follow TS 18661.

-fsingle-precision-constant
Treat floating-point constants as single precision instead of implicitly converting
them to double-precision constants.

-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when
performing complex division. Also, there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case. The default is ‘~fno-cx-limited-range’, but is
enabled by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

—-fcx—-fortran-rules
Complex multiplication and division follow Fortran rules. Range reduction is
done as part of complex division, but there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case.

The default is ‘~fno-cx-fortran-rules’.
The following options control optimizations that may improve performance, but are not

enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

202

Using the GNU Compiler Collection (GCC)

-fbranch-probabilities

After running a program compiled with ‘-fprofile-arcs’ (see Section 3.12
[Instrumentation Options|, page 234), you can compile it a second time
using ‘-fbranch-probabilities’, to improve optimizations based on
the number of times each branch was taken. When a program compiled
with ‘-fprofile-arcs’ exits, it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file. The information in this data file is
very dependent on the structure of the generated code, so you must use the
same source code and the same optimization options for both compilations.
See details about the file naming in ‘-fprofile-arcs’.

With ‘~fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.cc’, instead of guessing
which path a branch is most likely to take, the ‘REG_BR_PROB’ values are used
to exactly determine which path is taken more often.

Enabled by ‘-fprofile-use’ and ‘~fauto-profile’.

-fprofile-values

If combined with ‘~-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions for usage in optimizations.

Enabled by ‘-fprofile-generate’, ‘~-fprofile-use’, and ‘~fauto-profile’.

-fprofile-reorder-functions

-fvpt

Function reordering based on profile instrumentation collects first time of exe-
cution of a function and orders these functions in ascending order.

Enabled with ‘-fprofile-use’.
If combined with ‘-fprofile-arcs’, this option instructs the compiler to add
code to gather information about values of expressions.

With ‘~fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operations using the knowledge about the value of the
denominator.

Enabled with ‘~-fprofile-use’ and ‘-fauto-profile’.

-frename-registers

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization most benefits processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables no longer
stay in a “home register”.

Enabled by default with ‘~funroll-loops’.

—fschedule-fusion

Performs a target dependent pass over the instruction stream to schedule in-
structions of same type together because target machine can execute them more
efficiently if they are adjacent to each other in the instruction flow.

Chapter 3: GCC Command Options 203

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.

Enabled by ‘-fprofile-use’ and ‘-fauto-profile’.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’,
‘~fweb’ and ‘~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with a small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled by ‘-fprofile-use’ and ‘-fauto-profile’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops
Peels loops for which there is enough information that they do not roll much
(from profile feedback or static analysis). It also turns on complete loop peeling
(i.e. complete removal of loops with small constant number of iterations).

Enabled by ‘-03’, ‘~fprofile-use’, and ‘~fauto-profile’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-01’ and higher, except for ‘-0g’.

-fmove-loop-stores
Enables the loop store motion pass in the GIMPLE loop optimizer. This moves
invariant stores to after the end of the loop in exchange for carrying the stored
value in a register across the iteration. Note for this option to have an effect
‘~ftree-loop-im’ has to be enabled as well. Enabled at level ‘-01" and higher,
except for ‘-0g’.

-fsplit-loops
Split a loop into two if it contains a condition that’s always true for one side of
the iteration space and false for the other.

Enabled by ‘-fprofile-use’ and ‘-fauto-profile’.
-funswitch-loops

Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

Enabled by ‘-fprofile-use’ and ‘-fauto-profile’.
—fversion-loops—-for-strides

If a loop iterates over an array with a variable stride, create another version of
the loop that assumes the stride is always one. For example:

204

Using the GNU Compiler Collection (GCC)

for (int i = 0; i < n; ++i)
x[i * stride] = ...;

becomes:
if (stride == 1)
for (int i = 0; i < n; ++i)
x[i] = ...;
else
for (int i = 0; i < n; ++i)
x[i * stride] = ...;
This is particularly useful for assumed-shape arrays in Fortran where (for ex-
ample) it allows better vectorization assuming contiguous accesses. This flag
is enabled by default at ‘-03’. It is also enabled by ‘-fprofile-use’ and
‘~fauto-profile’.

—-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format have linkers with such optimizations. On AIX, the linker
rearranges sections (CSECTSs) based on the call graph. The performance impact
varies.

Together with a linker garbage collection (linker ‘--gc-sections’ option) these
options may lead to smaller statically-linked executables (after stripping).

On ELF/DWARF systems these options do not degenerate the quality of the
debug information. There could be issues with other object files/debug info
formats.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. These options affect code generation. They
prevent optimizations by the compiler and assembler using relative locations
inside a translation unit since the locations are unknown until link time. An
example of such an optimization is relaxing calls to short call instructions.

-fstdarg-opt

Optimize the prologue of variadic argument functions with respect to usage of
those arguments.

-fsection—-anchors

Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;
int foo (void) { return a + b + c; }

Chapter 3: GCC Command Options 205

usually calculates the addresses of all three variables, but if you compile it with
‘~-fsection-anchors’, it accesses the variables from a common anchor point
instead. The effect is similar to the following pseudocode (which isn’t valid C):

int foo (void)
{
register int *xr = &x;
return xrl[&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

-fzero-call-used-regs=choice
Zero call-used registers at function return to increase program security by ei-
ther mitigating Return-Oriented Programming (ROP) attacks or preventing
information leakage through registers.

The possible values of choice are the same as for the zero_call_used_regs
attribute (see Section 6.33 [Function Attributes|, page 552). The default is
‘skip’.

You can control this behavior for a specific function by using the function
attribute zero_call_used_regs (see Section 6.33 [Function Attributes],
page 552).

—--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC does not inline functions that contain
more than a certain number of instructions. You can control some of these
constants on the command line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In order to get minimal, maximal and default value of a parameter, one can use
‘-—help=param -Q’ options.

In each case, the value is an integer. The following choices of name are recog-
nized for all targets:

predictable-branch-outcome
When branch is predicted to be taken with probability lower than
this threshold (in percent), then it is considered well predictable.

max-rtl-if-conversion-insns
RTL if-conversion tries to remove conditional branches around a
block and replace them with conditionally executed instructions.
This parameter gives the maximum number of instructions in a
block which should be considered for if-conversion. The compiler
will also use other heuristics to decide whether if-conversion is likely
to be profitable.

max-rtl-if-conversion-predictable-cost
RTL if-conversion will try to remove conditional branches around
a block and replace them with conditionally executed instructions.

206

Using the GNU Compiler Collection (GCC)

These parameters give the maximum permissible cost for the
sequence that would be generated by if-conversion depending on
whether the branch is statically determined to be predictable or
not. The units for this parameter are the same as those for the
GCC internal seq_cost metric. The compiler will try to provide a
reasonable default for this parameter using the BRANCH_COST
target macro.

max-crossjump-edges

The maximum number of incoming edges to consider for cross-
jumping. The algorithm used by ‘-fcrossjumping’ is O(N?) in
the number of edges incoming to each block. Increasing values
mean more aggressive optimization, making the compilation time
increase with probably small improvement in executable size.

min-crossjump-insns

The minimum number of instructions that must be matched at the
end of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched.

max-grow—-copy-bb-insns

The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.

max-goto-duplication-insns

The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored.

max-delay-slot-insn-search

The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions are searched, the time savings from filling the delay
slot are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with
probably small improvement in execution time.

max-delay-slot-live-search

When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This pa-
rameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph.

Chapter 3: GCC Command Options 207

max-gcse-memory
The approximate maximum amount of memory in kB that can be al-
located in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization is not done.

max-gcse—insertion-ratio
If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE inserts or removes the
expression and thus leaves partially redundant computations in the
instruction stream.

max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should
make when modulo scheduling a loop. Larger values can exponen-
tially increase compilation time.

max-inline-functions-called-once-loop-depth
Maximal loop depth of a call considered by inline heuristics that
tries to inline all functions called once.

max-inline-functions-called-once-insns
Maximal estimated size of functions produced while inlining func-
tions called once.

max-inline-insns-single
Several parameters control the tree inliner used in GCC. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared inline
and methods implemented in a class declaration (C++).

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by the
compiler are investigated. To those functions, a different (more re-
strictive) limit compared to functions declared inline can be applied
(‘--param max-inline-insns-auto’).

max-inline-insns-small
This is bound applied to calls which are considered relevant with
‘~finline-small-functions’.

max-inline-insns-size
This is bound applied to calls which are optimized for size. Small
growth may be desirable to anticipate optimization oppurtunities
exposed by inlining.

208

Using the GNU Compiler Collection (GCC)

uninlined-function-insns
Number of instructions accounted by inliner for function overhead
such as function prologue and epilogue.

uninlined-function-time
Extra time accounted by inliner for function overhead such as time
needed to execute function prologue and epilogue.

inline-heuristics-hint-percent
The scale (in percents) applied to ‘inline-insns-single’,

‘inline-insns-single-02’, ‘inline-insns-auto’ when inline
heuristics hints that inlining is very profitable (will enable later
optimizations).

uninlined-thunk-insns

uninlined-thunk-time
Same as ‘--param uninlined-function-insns’ and ‘--param
uninlined-function-time’ but applied to function thunks.

inline-min-speedup
When estimated performance improvement of caller + callee run-
time exceeds this threshold (in percent), the function can be inlined
regardless of the limit on ‘--param max-inline-insns-single’
and ‘--param max-inline-insns-auto’.

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining, inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily to
avoid extreme compilation time caused by non-linear algorithms

used by the back end.

large-function-growth
Specifies maximal growth of large function caused by inlining in
percents. For example, parameter value 100 limits large function
growth to 2.0 times the original size.

large-unit-insns

The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight.
For example, consider a unit consisting of function A that is
inline and B that just calls A three times. If B is small relative
to A, the growth of unit is 300\% and yet such inlining is
very sane. For very large units consisting of small inlineable
functions, however, the overall unit growth limit is needed to avoid
exponential explosion of code size. Thus for smaller units, the
size is increased to ‘-—-param large-unit-insns’ before applying
‘~-—param inline-unit-growth’.

Chapter 3: GCC Command Options 209

lazy-modules
Maximum number of concurrently open C++ module files when lazy
loading.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. For example, parameter value 20 limits unit growth to 1.2
times the original size. Cold functions (either marked cold via an
attribute or by profile feedback) are not accounted into the unit
size.

ipa-cp-unit-growth
Specifies maximal overall growth of the compilation unit caused
by interprocedural constant propagation. For example, parameter
value 10 limits unit growth to 1.1 times the original size.

ipa-cp-large-unit-insns
The size of translation unit that IPA-CP pass considers large.

large-stack-frame
The limit specifying large stack frames. While inlining the algo-
rithm is trying to not grow past this limit too much.

large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining
in percents. For example, parameter value 1000 limits large stack
frame growth to 11 times the original size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies the maximum number of instructions an out-of-line copy of
a self-recursive inline function can grow into by performing recursive
inlining.
‘-—param max-inline-insns-recursive’ applies to functions de-
clared inline. For functions not declared inline, recursive inlin-
ing happens only when ‘~-finline-functions’ (included in ‘-03’)
is enabled; ‘~-param max-inline-insns-recursive-auto’ applies
instead.

max-inline-recursive-depth
max-inline-recursive-depth-auto
Specifies the maximum recursion depth used for recursive inlining.

‘-—param max-inline-recursive-depth’ applies to functions de-
clared inline. For functions not declared inline, recursive inlin-
ing happens only when ‘-finline-functions’ (included in ‘-03’)
is enabled; ‘--param max-inline-recursive-depth-auto’ applies
instead.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion

210

Using the GNU Compiler Collection (GCC)

depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from the probability that
function recurses via a given call expression. This parameter limits
inlining only to call expressions whose probability exceeds the given
threshold (in percents).

early-inlining-insns
Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.

max—-early-inliner-iterations
Limit of iterations of the early inliner. This basically bounds the
number of nested indirect calls the early inliner can resolve. Deeper
chains are still handled by late inlining.

comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat vis-
ibility are shared across multiple compilation units.

modref-max-bases

modref-max-refs

modref-max—-accesses
Specifies the maximal number of base pointers, references and ac-
cesses stored for a single function by mod/ref analysis.

modref-max-tests
Specifies the maxmal number of tests alias oracle can perform to dis-
ambiguate memory locations using the mod/ref information. This
parameter ought to be bigger than ‘--param modref-max-bases’
and ‘--param modref-max-refs’.

modref-max-depth
Specifies the maximum depth of DFS walk used by modref escape
analysis. Setting to 0 disables the analysis completely.

modref-max-escape-points
Specifies the maximum number of escape points tracked by modref
per SSA-name.

modref-max-adjustments
Specifies the maximum number the access range is enlarged during
modref dataflow analysis.

profile-func-internal-id
A parameter to control whether to use function internal id in profile
database lookup. If the value is 0, the compiler uses an id that
is based on function assembler name and filename, which makes
old profile data more tolerant to source changes such as function
reordering etc.

Chapter 3: GCC Command Options 211

min-vect-loop-bound
The minimum number of iterations under which loops are not vec-
torized when ‘-ftree-vectorize’ is used. The number of itera-
tions after vectorization needs to be greater than the value specified
by this option to allow vectorization.

gcse—cost-distance-ratio
Scaling factor in calculation of maximum distance an expression can
be moved by GCSE optimizations. This is currently supported only
in the code hoisting pass. The bigger the ratio, the more aggres-
sive code hoisting is with simple expressions, i.e., the expressions
that have cost less than ‘gcse-unrestricted-cost’. Specifying 0
disables hoisting of simple expressions.

gcse—unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain the dis-
tance an expression can travel. This is currently supported only
in the code hoisting pass. The lesser the cost, the more aggres-
sive code hoisting is. Specifying 0 allows all expressions to travel
unrestricted distances.

max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm. The
value of 0 does not limit on the search, but may slow down compi-
lation of huge functions.

max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This
is used to avoid quadratic behavior in tree tail merging.
max-tail-merge-iterations
The maximum amount of iterations of the pass over the function.
This is used to limit compilation time in tree tail merging.

store-merging-allow-unaligned
Allow the store merging pass to introduce unaligned stores if it is
legal to do so.

max-stores-to-merge
The maximum number of stores to attempt to merge into wider
stores in the store merging pass.

max-store—-chains-to-track
The maximum number of store chains to track at the same time in
the attempt to merge them into wider stores in the store merging
pass.

max-stores—-to-track
The maximum number of stores to track at the same time in the
attemt to to merge them into wider stores in the store merging
pass.

212 Using the GNU Compiler Collection (GCC)

max-unrolled-insns
The maximum number of instructions that a loop may have to be
unrolled. If a loop is unrolled, this parameter also determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop may have to be unrolled. If a loop is
unrolled, this parameter also determines how many times the loop
code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop may have to be
peeled. If a loop is peeled, this parameter also determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-peel-branches
The maximum number of branches on the hot path through the
peeled sequence.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

min-loop-cond-split-prob
When FDO profile information is available, ‘min-loop-cond-split-prob’
specifies minimum threshold for probability of semi-invariant
condition statement to trigger loop split.

iv-consider—-all-candidates-bound
Bound on number of candidates for induction variables, below
which all candidates are considered for each use in induction

Chapter 3: GCC Command Options 213

variable optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time
complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set when adding a
new one.

avg-loop-niter
Average number of iterations of a loop.

dse-max-object-size
Maximum size (in bytes) of objects tracked bytewise by dead store
elimination. Larger values may result in larger compilation times.

dse-max-alias—-queries-per-store
Maximum number of queries into the alias oracle per store. Larger
values result in larger compilation times and may result in more
removed dead stores.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.

max-tree-if-conversion-phi-args
Maximum number of arguments in a PHI supported by TREE if
conversion unless the loop is marked with simd pragma.

vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alignment in the vectorizer.

vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alias in the vectorizer.

vect-max-peeling-for-alignment
The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means no limit.

max-iterations-to-track
The maximum number of iterations of a loop the brute-force algo-
rithm for analysis of the number of iterations of the loop tries to
evaluate.

214 Using the GNU Compiler Collection (GCC)

hot-bb-count-fraction
The denominator n of fraction 1/n of the maximal execution count
of a basic block in the entire program that a basic block needs to
at least have in order to be considered hot. The default is 10000,
which means that a basic block is considered hot if its execution
count is greater than 1/10000 of the maximal execution count. 0
means that it is never considered hot. Used in non-LTO mode.

hot-bb-count-ws-permille

The number of most executed permilles, ranging from 0 to 1000, of
the profiled execution of the entire program to which the execution
count of a basic block must be part of in order to be considered hot.
The default is 990, which means that a basic block is considered
hot if its execution count contributes to the upper 990 permilles,
or 99.0%, of the profiled execution of the entire program. 0 means
that it is never considered hot. Used in LTO mode.

hot-bb-frequency-fraction
The denominator n of fraction 1/n of the execution frequency of the
entry block of a function that a basic block of this function needs
to at least have in order to be considered hot. The default is 1000,
which means that a basic block is considered hot in a function if
it is executed more frequently than 1/1000 of the frequency of the
entry block of the function. 0 means that it is never considered hot.

unlikely-bb-count-fraction

The denominator n of fraction 1/n of the number of profiled runs
of the entire program below which the execution count of a basic
block must be in order for the basic block to be considered unlikely
executed. The default is 20, which means that a basic block is
considered unlikely executed if it is executed in fewer than 1/20, or
5%, of the runs of the program. 0 means that it is always considered
unlikely executed.

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where a function contains a single loop with known
bound and another loop with unknown bound. The known number
of iterations is predicted correctly, while the unknown number of
iterations average to roughly 10. This means that the loop without
bounds appears artificially cold relative to the other one.

builtin-expect-probability
Control the probability of the expression having the specified value.
This parameter takes a percentage (i.e. 0 ... 100) as input.

builtin-string-cmp-inline-length
The maximum length of a constant string for a builtin string cmp
call eligible for inlining.

Chapter 3: GCC Command Options 215

align-threshold
Select fraction of the maximal frequency of executions of a basic
block in a function to align the basic block.

align-loop-iterations
A loop expected to iterate at least the selected number of iterations
is aligned.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The ‘tracer-dynamic-coverage-feedback’ parameter is used
only when profile feedback is available. The real profiles (as
opposed to statically estimated ones) are much less balanced
allowing the threshold to be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is a rather artificial limit, as most of the duplicates are
eliminated later in cross jumping, so it may be set to much higher
values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-probability
tracer-min-branch-probability-feedback
Stop forward growth if the best edge has probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two parameters are

provided. ‘tracer-min-branch-probability-feedback’
is used for compilation with profile feedback and
‘tracer-min-branch-probability’ compilation without.

The value for compilation with profile feedback needs to be more
conservative (higher) in order to make tracer effective.

stack-clash-protection-guard-size
Specify the size of the operating system provided stack guard as 2
raised to num bytes. Higher values may reduce the number of ex-
plicit probes, but a value larger than the operating system provided
guard will leave code vulnerable to stack clash style attacks.

stack-clash-protection-probe-interval
Stack clash protection involves probing stack space as it is allocated.
This param controls the maximum distance between probes into
the stack as 2 raised to num bytes. Higher values may reduce the
number of explicit probes, but a value larger than the operating

216 Using the GNU Compiler Collection (GCC)

system provided guard will leave code vulnerable to stack clash
style attacks.

max-cse—-path-length
The maximum number of basic blocks on path that CSE considers.

max-cse—insns
The maximum number of instructions CSE processes before flush-
ing.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of “RAM?” is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compilation time increase with probably
slightly better performance.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,

Chapter 3: GCC Command Options 217

making the compilation time increase with probably slightly better
performance.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling.

max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling.

max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler.

min-spec—-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 disables region extensions.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insns are scheduled.

sched-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to
save its state across it.

sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting
same memory locations.

selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling.
It is a depth of search for available instructions.

218

Using the GNU Compiler Collection (GCC)

selsched-max-sched-times
The maximum number of times that an instruction is scheduled
during selective scheduling. This is the limit on the number of
iterations through which the instruction may be pipelined.

selsched-insns-to-rename
The maximum number of best instructions in the ready list that
are considered for renaming in the selective scheduler.

sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register.

max-combine-insns
The maximum number of instructions the RTL combiner tries to
combine.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets
the maximum value of a shared integer constant.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that receive stack smash-
ing protection when ‘-fstack-protector’ is used.

min-size-for-stack-sharing
The minimum size of variables taking part in stack slot sharing
when not optimizing.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure treated in a field sensitive
manner during pointer analysis.

prefetch-latency
Estimate on average number of instructions that are executed be-
fore prefetch finishes. The distance prefetched ahead is propor-
tional to this constant. Increasing this number may also lead to
less streams being prefetched (see ‘simultaneous-prefetches’).

simultaneous-prefetches

Maximum number of prefetches that can run at the same time.
ll1-cache-line-size

The size of cache line in L1 data cache, in bytes.

Chapter 3: GCC Command Options 219

ll-cache-size
The size of L1 data cache, in kilobytes.

12-cache-size
The size of L2 data cache, in kilobytes.

prefetch-dynamic-strides
Whether the loop array prefetch pass should issue software prefetch
hints for strides that are non-constant. In some cases this may be
beneficial, though the fact the stride is non-constant may make it
hard to predict when there is clear benefit to issuing these hints.

Set to 1 if the prefetch hints should be issued for non-
constant strides. Set to 0 if prefetch hints should be issued
only for strides that are known to be constant and below
‘prefetch-minimum-stride’.

prefetch-minimum-stride
Minimum constant stride, in bytes, to start using prefetch hints for.
If the stride is less than this threshold, prefetch hints will not be
issued.

This setting is useful for processors that have hardware prefetchers,
in which case there may be conflicts between the hardware prefetch-
ers and the software prefetchers. If the hardware prefetchers have a
maximum stride they can handle, it should be used here to improve
the use of software prefetchers.

A value of -1 means we don’t have a threshold and therefore prefetch
hints can be issued for any constant stride.

This setting is only useful for strides that are known and constant.

destructive-interference-size

constructive-interference-size
The values for the C++17 variables std: :hardware_destructive_
interference_size and std::hardware_constructive_
interference_size. The destructive interference size is
the minimum recommended offset between two independent
concurrently-accessed objects; the constructive interference size is
the maximum recommended size of contiguous memory accessed
together. Typically both will be the size of an L1 cache line for
the target, in bytes. For a generic target covering a range of L1
cache line sizes, typically the constructive interference size will be
the small end of the range and the destructive size will be the
large end.

The destructive interference size is intended to be used for layout,
and thus has ABI impact. The default value is not expected to
be stable, and on some targets varies with ‘-mtune’, so use of this
variable in a context where ABI stability is important, such as the
public interface of a library, is strongly discouraged; if it is used in
that context, users can stabilize the value using this option.

220

Using the GNU Compiler Collection (GCC)

The constructive interference size is less sensitive, as it is typically
only used in a ‘static_assert’ to make sure that a type fits within
a cache line.

See also ‘-Winterference-size’.

loop-interchange-max-num-stmts
The maximum number of stmts in a loop to be interchanged.

loop-interchange-stride-ratio
The minimum ratio between stride of two loops for interchange to
be profitable.

min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

use-canonical-types
Whether the compiler should use the “canonical” type system.
Should always be 1, which uses a more efficient internal mecha-
nism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.

switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are big-
ger than ‘switch-conversion-max-branch-ratio’ times the num-
ber of branches in the switch.

max-partial-antic-length

Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (‘-ftree-pre’) when
optimizing at ‘-03’ and above. For some sorts of source code the en-
hanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for this
parameter allows an unlimited set length.

rpo-vn-max-loop-depth
Maximum loop depth that is value-numbered optimistically. When
the limit hits the innermost rpo-vn-max-loop-depth loops and the
outermost loop in the loop nest are value-numbered optimistically
and the remaining ones not.

sccvn-max-alias—-queries-per-access
Maximum number of alias-oracle queries we perform when looking
for redundancies for loads and stores. If this limit is hit the search
is aborted and the load or store is not considered redundant. The

Chapter 3: GCC Command Options 221

number of queries is algorithmically limited to the number of stores
on all paths from the load to the function entry.

ira-max-loops—num
TRA uses regional register allocation by default. If a function con-
tains more loops than the number given by this parameter, only at
most the given number of the most frequently-executed loops form
regions for regional register allocation.

ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm to compress the con-
flict table, the table can still require excessive amounts of memory
for huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register alloca-
tor instead uses a faster, simpler, and lower-quality algorithm that
does not require building a pseudo-register conflict table.

ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in
loops for decisions to move loop invariants (see ‘-03’). The number
of available registers reserved for some other purposes is given by
this parameter. Default of the parameter is the best found from
numerous experiments.

ira-consider—-dup-in-all-alts

Make TRA to consider matching constraint (duplicated operand
number) heavily in all available alternatives for preferred register
class. If it is set as zero, it means IRA only respects the match-
ing constraint when it’s in the only available alternative with an
appropriate register class. Otherwise, it means IRA will check all
available alternatives for preferred register class even if it has found
some choice with an appropriate register class and respect the found
qualified matching constraint.

lra-inheritance-ebb-probability-cutoff
LRA tries to reuse values reloaded in registers in subsequent in-
sns. This optimization is called inheritance. EBB is used as a
region to do this optimization. The parameter defines a minimal
fall-through edge probability in percentage used to add BB to inher-
itance EBB in LRA. The default value was chosen from numerous
runs of SPEC2000 on x86-64.

loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation
time and in amount of needed compile-time memory, with very
large loops. Loops with more basic blocks than this parameter
won’t have loop invariant motion optimization performed on them.

loop—max-datarefs—-for-datadeps
Building data dependencies is expensive for very large loops. This
parameter limits the number of data references in loops that are

222 Using the GNU Compiler Collection (GCC)

considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies.

max-vartrack-size

Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.

max-vartrack-expr-depth

Sets a maximum number of recursion levels when attempting to
map variable names or debug temporaries to value expressions.
This trades compilation time for more complete debug information.
If this is set too low, value expressions that are available and could
be represented in debug information may end up not being used;
setting this higher may enable the compiler to find more complex
debug expressions, but compile time and memory use may grow.

max—-debug-marker-count
Sets a threshold on the number of debug markers (e.g. begin stmt
markers) to avoid complexity explosion at inlining or expanding to
RTL. If a function has more such gimple stmts than the set limit,
such stmts will be dropped from the inlined copy of a function, and
from its RTL expansion.

min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range
below the parameter is reserved exclusively for debug insns created
by ‘-fvar-tracking-assignments’, but debug insns may get (non-
overlapping) uids above it if the reserved range is exhausted.

ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more
new parameters only when their cumulative size is less or equal
to ‘ipa-sra-ptr-growth-factor’ times the size of the original
pointer parameter.

ipa-sra-max-replacements
Maximum pieces of an aggregate that IPA-SRA tracks. As a conse-
quence, it is also the maximum number of replacements of a formal
parameter.

sra-max-scalarization-size-Ospeed
sra-max-scalarization-size-0Osize
The two Scalar Reduction of Aggregates passes (SRA and
IPA-SRA) aim to replace scalar parts of aggregates with
uses of independent scalar variables. These parameters
control the maximum size, in storage units, of aggregate

Chapter 3: GCC Command Options 223

which is considered for replacement when compiling for
speed (‘sra-max-scalarization-size-Ospeed’) or size
(‘sra-max-scalarization-size-Osize’) respectively.

sra-max—propagations
The maximum number of artificial accesses that Scalar Replace-
ment of Aggregates (SRA) will track, per one local variable, in
order to facilitate copy propagation.

tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are saved
with the logging functions as opposed to save/restore code sequence
pairs. This option only applies when using ‘~fgnu-tm’.

graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
A value of zero can be used to lift the bound. A variable whose
value is unknown at compilation time and defined outside a SCoP
is a parameter of the SCoP.

loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
‘~floop-block’ or ‘-floop-strip-mine’, strip mine each loop in
the loop nest by a given number of iterations. The strip length
can be changed using the ‘loop-block-tile-size’ parameter.

ipa-jump-function-lookups
Specifies number of statements visited during jump function offset
discovery.

ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a
function’s parameter in order to propagate them and perform devir-
tualization. ‘ipa-cp-value-list-size’ is the maximum number
of values and types it stores per one formal parameter of a function.

ipa-cp-eval-threshold
IPA-CP calculates its own score of cloning profitability heuristics
and performs those cloning opportunities with scores that exceed
‘ipa-cp-eval-threshold’.

ipa-cp-max-recursive-depth
Maximum depth of recursive cloning for self-recursive function.

ipa-cp-min-recursive-probability
Recursive cloning only when the probability of call being executed
exceeds the parameter.

224

Using the GNU Compiler Collection (GCC)

ipa-cp-profile-count-base
When using ‘-fprofile-use’ option, IPA-CP will consider the
measured execution count of a call graph edge at this percentage
position in their histogram as the basis for its heuristics calculation.

ipa-cp-recursive-freq-factor
The number of times interprocedural copy propagation expects re-
cursive functions to call themselves.

ipa-cp-recursion-penalty
Percentage penalty the recursive functions will receive when they
are evaluated for cloning.

ipa-cp-single-call-penalty
Percentage penalty functions containing a single call to another
function will receive when they are evaluated for cloning.

ipa-max-agg-items
IPA-CP is also capable to propagate a number of scalar values
passed in an aggregate. ‘ipa-max-agg-items’ controls the maxi-
mum number of such values per one parameter.

ipa-cp-loop-hint-bonus
When IPA-CP determines that a cloning candidate would make
the number of iterations of a loop known, it adds a bonus of
‘ipa-cp-loop-hint-bonus’ to the profitability score of the
candidate.

ipa-max-loop-predicates
The maximum number of different predicates IPA will use to de-
scribe when loops in a function have known properties.

ipa-max-aa-steps
During its analysis of function bodies, IPA-CP employs alias
analysis in order to track values pointed to by function parameters.
In order not spend too much time analyzing huge functions, it
gives up and consider all memory clobbered after examining
‘ipa-max-aa-steps’ statements modifying memory.

ipa-max-switch-predicate-bounds
Maximal number of boundary endpoints of case ranges of switch
statement. For switch exceeding this limit, IPA-CP will not con-
struct cloning cost predicate, which is used to estimate cloning
benefit, for default case of the switch statement.

ipa-max-param-expr-ops
IPA-CP will analyze conditional statement that references some
function parameter to estimate benefit for cloning upon certain
constant value. But if number of operations in a parameter expres-
sion exceeds ‘ipa-max-param-expr-ops’, the expression is treated
as complicated one, and is not handled by IPA analysis.

Chapter 3: GCC Command Options 225

lto-partitions
Specify desired number of partitions produced during WHOPR
compilation. The number of partitions should exceed the number
of CPUs used for compilation.

lto-min-partition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too
many partitions.

lto-max-partition
Size of max partition for WHOPR (in estimated instructions). to
provide an upper bound for individual size of partition. Meant to
be used only with balanced partitioning.

lto-max-streaming-parallelism
Maximal number of parallel processes used for LTO streaming.

cxx-max-namespaces—for-diagnostic-help
The maximum number of namespaces to consult for suggestions
when C++ name lookup fails for an identifier.

sink-frequency-threshold
The maximum relative execution frequency (in percents) of the tar-
get block relative to a statement’s original block to allow statement
sinking of a statement. Larger numbers result in more aggressive
statement sinking. A small positive adjustment is applied for state-
ments with memory operands as those are even more profitable so
sink.

max-stores-to-sink
The maximum number of conditional store pairs that can be
sunk. Set to 0 if either vectorization (‘-ftree-vectorize’) or
if-conversion (‘-ftree-loop-if-convert’) is disabled.

case-values—-threshold
The smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. If the value
is 0, use the default for the machine.

jump-table-max-growth-ratio-for-size
The maximum code size growth ratio when expanding into a jump
table (in percent). The parameter is used when optimizing for size.

jump-table-max-growth-ratio-for-speed
The maximum code size growth ratio when expanding into a jump
table (in percent). The parameter is used when optimizing for
speed.

tree-reassoc-width
Set the maximum number of instructions executed in parallel in re-
associated tree. This parameter overrides target dependent heuris-
tics used by default if has non zero value.

226 Using the GNU Compiler Collection (GCC)

sched-pressure-algorithm

Choose between the two available implementations of
‘~fsched-pressure’. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the
relatively conservative approach taken by algorithm 1 and the
rather aggressive approach taken by the default scheduler. It relies
more heavily on having a regular register file and accurate register
pressure classes. See ‘haifa-sched.cc’ in the GCC sources for
more details.

The default choice depends on the target.

max-slsr-cand-scan
Set the maximum number of existing candidates that are consid-
ered when seeking a basis for a new straight-line strength reduction
candidate.

asan-globals
Enable buffer overflow detection for global objects. This
kind of protection is enabled by default if you are using
‘~fsanitize=address’ option. To disable global objects
protection use ‘--param asan-globals=0’.

asan-stack
Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using ‘-fsanitize=address’.
To disable stack protection use ‘--param asan-stack=0’" option.

asan-instrument-reads
Enable buffer overflow detection for memory reads. This
kind of protection is enabled by default when using
‘~fsanitize=address’. To disable memory reads protection use
‘--param asan-instrument-reads=0’.

asan-instrument-writes
Enable buffer overflow detection for memory writes. This
kind of protection 1is enabled by default when using
‘~fsanitize=address’. To disable memory writes protection use
‘-—param asan-instrument-writes=0’ option.

asan-memintrin
Enable detection for built-in functions. This kind of protection is
enabled by default when using ‘~fsanitize=address’. To disable
built-in functions protection use ‘--param asan-memintrin=0’.

asan-use-after-return
Enable detection of use-after-return. This kind of protection is
enabled by default when using the ‘~-fsanitize=address’ option.
To disable it use ‘--param asan-use-after-return=0’.

Chapter 3: GCC Command Options 227

Note: By default the check is disabled at run time. To enable it, add
detect_stack_use_after_return=1 to the environment variable
ASAN_OPTIONS.

asan-instrumentation-with-call-threshold
If number of memory accesses in function being instrumented
is greater or equal to this number, use callbacks instead
of inline checks. E.g. to disable inline code use ‘--param

asan-instrumentation-with-call-threshold=0’.

hwasan-instrument-stack
Enable hwasan instrumentation of statically sized stack-allocated
variables. This kind of instrumentation is enabled by default when
using ‘-fsanitize=hwaddress’ and disabled by default when using
‘-fsanitize=kernel-hwaddress’. To disable stack instrumenta-
tion use ‘--param hwasan-instrument-stack=0’, and to enable it
use ‘--param hwasan-instrument-stack=1".

hwasan-random-frame-tag

When using stack instrumentation, decide tags for stack variables
using a deterministic sequence beginning at a random tag for
each frame. With this parameter unset tags are chosen using
the same sequence but beginning from 1. This is enabled
by default for ‘-fsanitize=hwaddress’ and unavailable for
‘~-fsanitize=kernel-hwaddress’. To disable it use ‘--param
hwasan-random-frame-tag=0’.

hwasan-instrument-allocas
Enable hwasan instrumentation of dynamically sized stack-
allocated variables. This kind of instrumentation is enabled
by default when using ‘-fsanitize=hwaddress’ and disabled
by default when wusing ‘-fsanitize=kernel-hwaddress’.
To disable instrumentation of such variables use ‘--param
4

hwasan-instrument-allocas=0’, and to enable it use ‘--param
hwasan-instrument-allocas=1".

hwasan-instrument-reads
Enable hwasan checks on memory reads. Instrumentation of
reads is enabled by default for both ‘-fsanitize=hwaddress’ and
‘~fsanitize=kernel-hwaddress’. To disable checking memory
reads use ‘--param hwasan-instrument-reads=0’.

hwasan-instrument-writes
Enable hwasan checks on memory writes. Instrumentation of
writes is enabled by default for both ‘-fsanitize=hwaddress’ and
‘~fsanitize=kernel-hwaddress’. To disable checking memory
writes use ‘--param hwasan-instrument-writes=0".

hwasan-instrument-mem-intrinsics
Enable hwasan instrumentation of builtin functions. Instrumen-
tation of these builtin functions is enabled by default for both

228

Using the GNU Compiler Collection (GCC)

‘~fsanitize=hwaddress’ and ‘-fsanitize=kernel-hwaddress’.
¢

To disable instrumentation of builtin functions use ‘--param
hwasan-instrument-mem-intrinsics=0’.

use-after-scope-direct-emission-threshold
If the size of a local variable in bytes is smaller or equal to this
number, directly poison (or unpoison) shadow memory instead of
using run-time callbacks.

tsan-distinguish-volatile
Emit special instrumentation for accesses to volatiles.

tsan-instrument-func-entry-exit
Emit instrumentation calls to __tsan_func_entry() and
__tsan_func_exit().

max-fsm-thread-path-insns
Maximum number of instructions to copy when duplicating blocks
on a finite state automaton jump thread path.

max-fsm-thread-length
Maximum number of basic blocks on a jump thread path.

threader-debug
threader-debug=[nonelall] Enables verbose dumping of the
threader solver.

parloops-chunk-size
Chunk size of omp schedule for loops parallelized by parloops.

parloops-schedule
Schedule type of omp schedule for loops parallelized by parloops
(static, dynamic, guided, auto, runtime).

parloops-min-per-thread
The minimum number of iterations per thread of an innermost
parallelized loop for which the parallelized variant is preferred over
the single threaded one. Note that for a parallelized loop nest the
minimum number of iterations of the outermost loop per thread is
two.

max-ssa-name—query-depth
Maximum depth of recursion when querying properties of SSA
names in things like fold routines. One level of recursion corre-
sponds to following a use-def chain.

max—-speculative-devirt-maydefs
The maximum number of may-defs we analyze when looking for a
must-def specifying the dynamic type of an object that invokes a
virtual call we may be able to devirtualize speculatively.

max-vrp-switch-assertions
The maximum number of assertions to add along the default edge
of a switch statement during VRP.

Chapter 3: GCC Command Options 229

evrp-sparse—-threshold
Maximum number of basic blocks before EVRP uses a sparse cache.

evrp-mode
Specifies the mode Early VRP should operate in.

vrpl-mode
Specifies the mode VRP pass 1 should operate in.

vrp2-mode
Specifies the mode VRP pass 2 should operate in.

ranger-debug
Specifies the type of debug output to be issued for ranges.

evrp-switch-limit
Specifies the maximum number of switch cases before EVRP ig-
nores a switch.

unroll-jam-min-percent
The minimum percentage of memory references that must be opti-
mized away for the unroll-and-jam transformation to be considered
profitable.

unroll-jam-max-unroll
The maximum number of times the outer loop should be unrolled
by the unroll-and-jam transformation.

max-rtl-if-conversion-unpredictable-cost
Maximum permissible cost for the sequence that would be gener-
ated by the RTL if-conversion pass for a branch that is considered
unpredictable.

max-variable-expansions-in-unroller
If ‘~fvariable-expansion-in-unroller’ is used, the maximum
number of times that an individual variable will be expanded during
loop unrolling.

partial-inlining-entry-probability
Maximum probability of the entry BB of split region (in percent
relative to entry BB of the function) to make partial inlining hap-
pen.

max-tracked-strlens
Maximum number of strings for which strlen optimization pass will
track string lengths.

gcse—after-reload-partial-fraction
The threshold ratio for performing partial redundancy elimination
after reload.

gcse-after-reload-critical-fraction
The threshold ratio of critical edges execution count that permit
performing redundancy elimination after reload.

230 Using the GNU Compiler Collection (GCC)

max—-loop-header-insns
The maximum number of insns in loop header duplicated by the
copy loop headers pass.

vect-epilogues—nomask
Enable loop epilogue vectorization using smaller vector size.

vect-partial-vector-usage

Controls when the loop vectorizer considers using partial vector
loads and stores as an alternative to falling back to scalar code. 0
stops the vectorizer from ever using partial vector loads and stores.
1 allows partial vector loads and stores if vectorization removes
the need for the code to iterate. 2 allows partial vector loads and
stores in all loops. The parameter only has an effect on targets that
support partial vector loads and stores.

vect-inner-loop-cost-factor
The maximum factor which the loop vectorizer applies to the cost
of statements in an inner loop relative to the loop being vectorized.
The factor applied is the maximum of the estimated number of
iterations of the inner loop and this parameter. The default value
of this parameter is 50.

vect-induction-float

Enable loop vectorization of floating point inductions.
avoid-fma-max-bits

Maximum number of bits for which we avoid creating FMAs.
sms-loop-average-count—-threshold

A threshold on the average loop count considered by the swing
modulo scheduler.

sms-dfa-history
The number of cycles the swing modulo scheduler considers when
checking conflicts using DFA.

graphite-allow-codegen—-errors
Whether codegen errors should be ICEs when ‘-fchecking’.

sms-max—-ii-factor
A factor for tuning the upper bound that swing modulo scheduler
uses for scheduling a loop.

lra-max-considered-reload-pseudos
The max number of reload pseudos which are considered during
spilling a non-reload pseudo.

max-pow-sqrt-depth
Maximum depth of sqrt chains to use when synthesizing exponen-
tiation by a real constant.

max-dse—-active-local-stores
Maximum number of active local stores in RTL dead store elimi-
nation.

Chapter 3: GCC Command Options 231

asan-instrument-allocas
Enable asan allocas/VLAs protection.

max-iterations-computation-cost
Bound on the cost of an expression to compute the number of iter-
ations.

max-isl-operations
Maximum number of isl operations, 0 means unlimited.

graphite-max-arrays-per—-scop
Maximum number of arrays per scop.

max-vartrack-reverse-op-size
Max. size of loc list for which reverse ops should be added.

fsm-scale-path-stmts
Scale factor to apply to the number of statements in a threading
path when comparing to the number of (scaled) blocks.

uninit-control-dep-attempts
Maximum number of nested calls to search for control dependencies
during uninitialized variable analysis.

fsm-scale-path-blocks
Scale factor to apply to the number of blocks in a threading path
when comparing to the number of (scaled) statements.

sched-autopref-queue-depth
Hardware autoprefetcher scheduler model control flag. Number of
lookahead cycles the model looks into; at ’ * only enable instruction
sorting heuristic.

loop-versioning-max-inner-insns
The maximum number of instructions that an inner loop can have
before the loop versioning pass considers it too big to copy.

loop-versioning-max-outer—-insns
The maximum number of instructions that an outer loop can have
before the loop versioning pass considers it too big to copy, dis-
counting any instructions in inner loops that directly benefit from
versioning.

ssa-name-def-chain-limit
The maximum number of SSA_NAME assignments to follow in
determining a property of a variable such as its value. This limits
the number of iterations or recursive calls GCC performs when
optimizing certain statements or when determining their validity
prior to issuing diagnostics.

store-merging-max-size
Maximum size of a single store merging region in bytes.

232

Using the GNU Compiler Collection (GCC)

hash-table-verification-limit
The number of elements for which hash table verification is done
for each searched element.

max-find-base-term-values
Maximum number of VALUEs handled during a single
find_base_term call.

analyzer-max-enodes-per-program-point
The maximum number of exploded nodes per program point within
the analyzer, before terminating analysis of that point.

analyzer-max-constraints
The maximum number of constraints per state.

analyzer-min-snodes—-for-call-summary
The minimum number of supernodes within a function for the an-
alyzer to consider summarizing its effects at call sites.

analyzer-max-enodes—-for-full-dump
The maximum depth of exploded nodes that should appear in a
dot dump before switching to a less verbose format.

analyzer-max-recursion-depth
The maximum number of times a callsite can appear in a call stack
within the analyzer, before terminating analysis of a call that would
recurse deeper.

analyzer-max-svalue-depth
The maximum depth of a symbolic value, before approximating the
value as unknown.

analyzer-max-infeasible-edges
The maximum number of infeasible edges to reject before declaring
a diagnostic as infeasible.

gimple-fe-computed-hot-bb-threshold
The number of executions of a basic block which is considered hot.
The parameter is used only in GIMPLE FE.

analyzer-bb-explosion-factor
The maximum number of ’after supernode’ exploded nodes within
the analyzer per supernode, before terminating analysis.

ranger-logical-depth
Maximum depth of logical expression evaluation ranger will look
through when evaluating outgoing edge ranges.

relation-block-1limit
Maximum number of relations the oracle will register in a basic
block.

min-pagesize
Minimum page size for warning purposes.

Chapter 3: GCC Command Options 233

openacc-kernels

Specify mode of OpenACC ‘kernels’ constructs handling. With
‘--param=openacc-kernels=decompose’, OpenACC ‘kernels’ con-
structs are decomposed into parts, a sequence of compute con-
structs, each then handled individually. This is work in progress.
With ‘--param=openacc-kernels=parloops’, OpenACC ‘kernels’
constructs are handled by the ‘parloops’ pass, en bloc. This is the
current default.

openacc-privatization
Specify mode of OpenACC privatization diagnostics for
‘~fopt-info-omp-note’ and applicable ‘~fdump-tree-*-details’ |}
With ‘--param=openacc-privatization=quiet’,
don’t diagnose. This is the current default. With
‘-—param=openacc-privatization=noisy’, do diagnose.

The following choices of name are available on AArch64 targets:

aarch64-sve-compare-costs
When vectorizing for SVE, consider using “unpacked” vectors for
smaller elements and use the cost model to pick the cheapest ap-
proach. Also use the cost model to choose between SVE and Ad-
vanced SIMD vectorization.

Using unpacked vectors includes storing smaller elements in larger
containers and accessing elements with extending loads and trun-
cating stores.

aarch64-float-recp-precision
The number of Newton iterations for calculating the reciprocal for
float type. The precision of division is proportional to this param
when division approximation is enabled. The default value is 1.

aarch64-double-recp-precision
The number of Newton iterations for calculating the reciprocal for
double type. The precision of division is propotional to this param
when division approximation is enabled. The default value is 2.

aarch64-autovec-preference
Force an ISA selection strategy for auto-vectorization. Accepts
values from 0 to 4, inclusive.

‘0’ Use the default heuristics.

‘v Use only Advanced SIMD for auto-vectorization.

‘2’ Use only SVE for auto-vectorization.

‘3’ Use both Advanced SIMD and SVE. Prefer Advanced
SIMD when the costs are deemed equal.

‘4’ Use both Advanced SIMD and SVE. Prefer SVE when

the costs are deemed equal.

The default value is 0.

234 Using the GNU Compiler Collection (GCC)

aarch64-loop-vect-issue-rate-niters
The tuning for some AArch64 CPUs tries to take both latencies
and issue rates into account when deciding whether a loop should
be vectorized using SVE, vectorized using Advanced SIMD, or not
vectorized at all. If this parameter is set to n, GCC will not use
this heuristic for loops that are known to execute in fewer than n
Advanced SIMD iterations.

aarch64-vect-unroll-limit
The vectorizer will use available tuning information to determine
whether it would be beneficial to unroll the main vectorized loop
and by how much. This parameter set’s the upper bound of how
much the vectorizer will unroll the main loop. The default value is
four.

The following choices of name are available on 1386 and x86_64 targets:

x86-stlf-window-ninsns
Instructions number above which STFL stall penalty can be com-
pensated.

3.12 Program Instrumentation Options

GCC supports a number of command-line options that control adding run-time instrumen-
tation to the code it normally generates. For example, one purpose of instrumentation is
collect profiling statistics for use in finding program hot spots, code coverage analysis, or
profile-guided optimizations. Another class of program instrumentation is adding run-time
checking to detect programming errors like invalid pointer dereferences or out-of-bounds
array accesses, as well as deliberately hostile attacks such as stack smashing or C++ vtable
hijacking. There is also a general hook which can be used to implement other forms of
tracing or function-level instrumentation for debug or program analysis purposes.
Y
-pg Generate extra code to write profile information suitable for the analysis pro-
gram prof (for ‘-p’) or gprof (for ‘-pg’). You must use this option when
compiling the source files you want data about, and you must also use it when
linking.

¢

You can use the function attribute no_instrument_function to suppress
profiling of individual functions when compiling with these options. See
Section 6.33.1 [Common Function Attributes], page 553.

—fprofile-arcs
Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. On targets that support constructors with
priority support, profiling properly handles constructors, destructors and C++
constructors (and destructors) of classes which are used as a type of a global
variable.

When the compiled program exits it saves this data to a file called
‘auxname.gcda’ for each source file. The data may be used for profile-directed

Chapter 3: GCC Command Options 235

optimizations (‘-fbranch-probabilities’), or for test coverage analysis
(‘-ftest-coverage’). Each object file’s auxname is generated from the name
of the output file, if explicitly specified and it is not the final executable,
otherwise it is the basename of the source file. In both cases any suffix is
removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’ for
output file specified as ‘-0 dir/foo.0’).

Note that if a command line directly links source files, the corresponding .gcda
files will be prefixed with the unsuffixed name of the output file. E.g. gcc a.c
b.c -o binary would generate ‘binary-a.gcda’ and ‘binary-b.gcda’ files.

See Section 10.5 [Cross-profiling], page 931.

--coverage
This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘~fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~-ftest-coverage’ option. You do not need to profile every source file in
a program.

e Compile the source files additionally with ‘~fprofile-abs-path’ to create
absolute path names in the ‘.gcno’ files. This allows gcov to find the
correct sources in projects where compilations occur with different working
directories.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Unless a strict
ISO C dialect option is in effect, fork calls are detected and correctly
handled without double counting.

Moreover, an object file can be recompiled multiple times and the corre-
sponding ‘.gcda’ file merges as long as the source file and the compiler
options are unchanged.

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.11 [Options that Control
Optimization], page 161).

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘~fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code

236

Using the GNU Compiler Collection (GCC)

to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

-ftest-coverage

Produce a notes file that the gcov code-coverage utility (see Chapter 10 [gcov—
a Test Coverage Program|, page 919) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘~-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data matches the source files more closely if you
do not optimize.

-fprofile-abs-path

Automatically convert relative source file names to absolute path names in the
‘.gcno’ files. This allows gcov to find the correct sources in projects where
compilations occur with different working directories.

-fprofile-dir=path

Set the directory to search for the profile data files in to path. This
option affects only the profile data generated by ‘-fprofile-generate’,
‘~-ftest-coverage’, ‘-fprofile-arcs’ and used by ‘-fprofile-use’ and
‘~fbranch-probabilities’ and its related options. Both absolute and
relative paths can be used. By default, GCC uses the current directory as
path, thus the profile data file appears in the same directory as the object file.
In order to prevent the file name clashing, if the object file name is not an
absolute path, we mangle the absolute path of the ‘sourcename.gcda’ file and
use it as the file name of a ‘.gcda’ file. See details about the file naming in
‘~fprofile-arcs’. See similar option ‘-fprofile-note’.

When an executable is run in a massive parallel environment, it is recommended
to save profile to different folders. That can be done with variables in path that
are exported during run-time:

hp process ID.
%q{VAR} wvalue of environment variable VAR

-fprofile-generate
-fprofile-generate=path

Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘~fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: ‘-fprofile-arcs’, ‘~fprofile-values’,
‘~finline-functions’, and ‘~-fipa-bit-cp’.

If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

To optimize the program based on the collected profile information, use
‘~fprofile-use’. See Section 3.11 [Optimize Options], page 161, for more
information.

Chapter 3: GCC Command Options 237

-fprofile-info-section

-fprofile-info-section=name
Register the profile information in the specified section instead of using a con-
structor /destructor. The section name is name if it is specified, otherwise the
section name defaults to .gcov_info. A pointer to the profile information
generated by ‘~fprofile-arcs’ is placed in the specified section for each trans-
lation unit. This option disables the profile information registration through
a constructor and it disables the profile information processing through a de-
structor. This option is not intended to be used in hosted environments such
as GNU/Linux. It targets free-standing environments (for example embedded
systems) with limited resources which do not support constructors/destructors
or the C library file I/O.

The linker could collect the input sections in a continuous memory block and
define start and end symbols. A GNU linker script example which defines a
linker output section follows:

.gcov_info

{
PROVIDE (__gcov_info_start = .);
KEEP (*(.gcov_info))
PROVIDE (__gcov_info_end = .);

}

The program could dump the profiling information registered in this linker set
for example like this:

#include <gcov.h>
#include <stdio.h>
#include <stdlib.h>

extern const struct gcov_info *__gcov_info_start[];
extern const struct gcov_info *__gcov_info_end[];

static void
filename (const char *f, void *arg)
{
puts (£);
}

static void
dump (const void *d, unsigned n, void *arg)
{

const unsigned char *c = d;

for (unsigned i = 0; i < n; ++i)
printf ("%02x", c[il);
}

static void *
allocate (unsigned length, void *arg)
{

return malloc (length);

}

static void
dump_gcov_info (void)

238

Using the GNU Compiler Collection (GCC)

const struct gcov_info **info = __gcov_info_start;
const struct gcov_info **end = __gcov_info_end;

/* Obfuscate variable to prevent compiler optimizations. */
__asm__ ("" : "+r" (info));

while (info != end)

{
void *arg = NULL;
__gcov_info_to_gcda (*info, filename, dump, allocate, arg);
putchar (°\n’);
++info;

}

}

int

main()

{
dump_gcov_info();
return O;

}

-fprofile-note=path

If path is specified, GCC saves ‘.gcno’ file into path location. If you combine
the option with multiple source files, the ‘. gcno’ file will be overwritten.

—-fprofile-prefix-path=path

This option can be used in combination with ‘profile-generate=’profile_dir
and ‘profile-use="profile_dir to inform GCC where is the base directory of
built source tree. By default profile_dir will contain files with mangled ab-
solute paths of all object files in the built project. This is not desirable
when directory used to build the instrumented binary differs from the direc-
tory used to build the binary optimized with profile feedback because the
profile data will not be found during the optimized build. In such setups
‘~fprofile-prefix-path="path with path pointing to the base directory of
the build can be used to strip the irrelevant part of the path and keep all file
names relative to the main build directory.

-fprofile-prefix-map=old=new

When compiling files residing in directory ‘old’, record profiling information
(with ‘--coverage’) describing them as if the files resided in directory ‘new’
instead. See also ‘-ffile-prefix-map’.

-fprofile-update=method

Alter the update method for an application instrumented for profile feedback
based optimization. The method argument should be one of ‘single’, ‘atomic’
or ‘prefer-atomic’. The first one is useful for single-threaded applications,
while the second one prevents profile corruption by emitting thread-safe code.

Warning: When an application does not properly join all threads (or creates
an detached thread), a profile file can be still corrupted.

Chapter 3: GCC Command Options 239

Using ‘prefer-atomic’ would be transformed either to ‘atomic’, when sup-
ported by a target, or to ‘single’ otherwise. The GCC driver automatically
selects ‘prefer-atomic’ when ‘-pthread’ is present in the command line.

-fprofile-filter-files=regex
Instrument only functions from files whose name matches any of the regular
expressions (separated by semi-colons).

For example, ‘~fprofile-filter-files=main\.c;module.*\.c’ will instru-
ment only ‘main.c’ and all C files starting with 'module’.

-fprofile-exclude-files=regex
Instrument only functions from files whose name does not match any of the
regular expressions (separated by semi-colons).

For example, ‘~fprofile-exclude-files=/usr/.*’ will prevent instrumenta-
tion of all files that are located in the ‘/usr/’ folder.

-fprofile-reproducible=[multithreaded|parallel-runs|serial]
Control level of reproducibility of profile gathered by -fprofile-generate.
This makes it possible to rebuild program with same outcome which is useful,
for example, for distribution packages.

With ‘-fprofile-reproducible=serial’ the profile gathered by
‘~fprofile-generate’ is reproducible provided the trained program behaves
the same at each invocation of the train run, it is not multi-threaded and
profile data streaming is always done in the same order. Note that profile
streaming happens at the end of program run but also before fork function is
invoked.

Note that it is quite common that execution counts of some part of programs
depends, for example, on length of temporary file names or memory space ran-
domization (that may affect hash-table collision rate). Such non-reproducible
part of programs may be annotated by no_instrument_function function at-
tribute. gcov-dump with ‘-1’ can be used to dump gathered data and verify
that they are indeed reproducible.

With ‘~fprofile-reproducible=parallel-runs’ collected profile stays repro-
ducible regardless the order of streaming of the data into geda files. This setting
makes it possible to run multiple instances of instrumented program in parallel
(such as with make -j). This reduces quality of gathered data, in particular of
indirect call profiling.

-fsanitize=address
Enable AddressSanitizer, a fast memory error detector. Memory access
instructions are instrumented to detect out-of-bounds and use-after-free bugs.
The option enables ‘~-fsanitize-address-use-after-scope’. See https://
github.com/google/sanitizers/wiki/AddressSanitizer for more details.
The run-time behavior can be influenced using the ASAN_OPTIONS environment
variable. When set to help=1, the available options are shown at startup of
the instrumented program. See https://github.com/google/sanitizers/
wiki / AddressSanitizerFlags # run-time-flags for a list of supported
options. The option cannot be combined with ‘-fsanitize=thread’ or

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags

240 Using the GNU Compiler Collection (GCC)

‘~fsanitize=hwaddress’. Note that the only target ‘~-fsanitize=hwaddress’
is currently supported on is AArch64.

—-fsanitize=kernel-address
Enable AddressSanitizer for Linux kernel. See https://github.com/google/
kasan for more details.

-fsanitize=hwaddress
Enable Hardware-assisted AddressSanitizer, which uses a hardware ability
to ignore the top byte of a pointer to allow the detection of memory
errors with a low memory overhead. @ Memory access instructions are
instrumented to detect out-of-bounds and use-after-free bugs. The option
enables ‘-fsanitize-address-use-after-scope’. See https: //clang .
11lvm.org/docs/HardwareAssistedAddressSanitizerDesign.html for more
details. The run-time behavior can be influenced using the HWASAN_OPTIONS
environment variable. When set to help=1, the available options are shown
at startup of the instrumented program. The option cannot be combined
with ‘-fsanitize=thread’ or ‘-fsanitize=address’, and is currently only

available on AArch64.

-fsanitize=kernel-hwaddress
Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.
Similar to ‘-fsanitize=kernel-address’ but using an alternate instrumenta-
tion method, and similar to ‘~fsanitize=hwaddress’ but with instrumentation
differences necessary for compiling the Linux kernel. These differences are to
avoid hwasan library initialization calls and to account for the stack pointer
having a different value in its top byte.

Note: This option has different defaults to the ‘-fsanitize=hwaddress’.
Instrumenting the stack and alloca calls are not on by default but
are still possible by specifying the command-line options ‘--param
hwasan-instrument-stack=1" and ‘--param hwasan-instrument-allocas=1’
respectively. Using a random frame tag is not implemented for kernel
instrumentation.

-fsanitize=pointer-compare

Instrument comparison operation (<, <=, > >=) with pointer operands.
The option must be combined with either ‘~-fsanitize=kernel-address’
or ‘-fsanitize=address’ The option cannot be combined with
‘~-fsanitize=thread’. Note: By default the check is disabled at run time.
To enable it, add detect_invalid_pointer_pairs=2 to the environment
variable ASAN_OPTIONS. Using detect_invalid_pointer_pairs=1 detects
invalid operation only when both pointers are non-null.

-fsanitize=pointer-subtract
Instrument subtraction with pointer operands. The option must be combined
with either ‘-fsanitize=kernel-address’ or ‘-fsanitize=address’ The op-
tion cannot be combined with ‘-fsanitize=thread’. Note: By default the
check is disabled at run time. To enable it, add detect_invalid_pointer_
pairs=2 to the environment variable ASAN_OPTIONS. Using detect_invalid_

https://github.com/google/kasan
https://github.com/google/kasan
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

Chapter 3: GCC Command Options 241

pointer_pairs=1 detects invalid operation only when both pointers are non-
null.

-fsanitize=shadow-call-stack
Enable ShadowCallStack, a security enhancement mechanism used to protect
programs against return address overwrites (e.g. stack buffer overflows.) It
works by saving a function’s return address to a separately allocated shadow
call stack in the function prologue and restoring the return address from the
shadow call stack in the function epilogue. Instrumentation only occurs in
functions that need to save the return address to the stack.

Currently it only supports the aarch64 platform. It is specifically designed for
linux kernels that enable the CONFIG_.SHADOW_CALL_STACK option. For
the user space programs, runtime support is not currently provided in libc and
libgce. Users who want to use this feature in user space need to provide their
own support for the runtime. It should be noted that this may cause the ABI
rules to be broken.

On aarch64, the instrumentation makes use of the platform register x18. This
generally means that any code that may run on the same thread as code com-
piled with ShadowCallStack must be compiled with the flag ‘-ffixed-x18’,
otherwise functions compiled without ‘-ffixed-x18" might clobber x18 and so
corrupt the shadow stack pointer.

Also, because there is no userspace runtime support, code compiled with Shad-
owCallStack cannot use exception handling. Use ‘~fno-exceptions’ to turn
off exceptions.

See https://clang.1llvm.org/docs/ShadowCallStack.html for more details.

-fsanitize=thread

Enable ThreadSanitizer, a fast data race detector. Memory access instructions
are instrumented to detect data race bugs. See https: //github . com/
google/sanitizers/wiki#threadsanitizer for more details. The run-time
behavior can be influenced using the TSAN_OPTIONS environment variable; see
https: //github . com/google /sanitizers/wiki /ThreadSanitizerFlags
for a list of supported options. The option cannot be combined with
‘-fsanitize=address’, ‘-fsanitize=leak’.

Note that sanitized atomic builtins cannot throw exceptions when
operating on invalid memory addresses with non-call exceptions
(‘-fnon-call-exceptions’).

-fsanitize=leak
Enable LeakSanitizer, a memory leak detector. This option only matters for
linking of executables and the executable is linked against a library that over-
rides malloc and other allocator functions. See https://github.com/google/
sanitizers/wiki/AddressSanitizerLeakSanitizer for more details. The
run-time behavior can be influenced using the LSAN_OPTIONS environment vari-
able. The option cannot be combined with ‘~fsanitize=thread’.

-fsanitize=undefined
Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Var-
ious computations are instrumented to detect undefined behavior at runtime.

https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer

242

Using the GNU Compiler Collection (GCC)

See https://clang.llvm.org/docs/UndefinedBehaviorSanitizer . html
for more details. The run-time behavior can be influenced using the UBSAN_
OPTIONS environment variable. Current suboptions are:

-fsanitize=shift
This option enables checking that the result of a shift operation
is not undefined. Note that what exactly is considered
undefined differs slightly between C and C++, as well as between
ISO C90 and C99, etc. This option has two suboptions,
‘~-fsanitize=shift-base’ and ‘-fsanitize=shift-exponent’.

-fsanitize=shift-exponent
This option enables checking that the second argument of a shift
operation is not negative and is smaller than the precision of the
promoted first argument.

-fsanitize=shift-base
If the second argument of a shift operation is within range, check
that the result of a shift operation is not undefined. Note that what
exactly is considered undefined differs slightly between C and C++,
as well as between ISO C90 and C99, etc.

-fsanitize=integer-divide-by-zero
Detect integer division by zero.

-fsanitize=unreachable
With this option, the compiler turns the __builtin_unreachable
call into a diagnostics message call instead. When reaching the
__builtin_unreachable call, the behavior is undefined.

-fsanitize=vla-bound
This option instructs the compiler to check that the size of a vari-
able length array is positive.

-fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when
it tries to dereference a NULL pointer, or if a reference (possibly
an rvalue reference) is bound to a NULL pointer, or if a method is
invoked on an object pointed by a NULL pointer.

-fsanitize=return
This option enables return statement checking. Programs built
with this option turned on will issue an error message when the
end of a non-void function is reached without actually returning a
value. This option works in C++ only.

-fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of +, *, and both unary and binary - does not overflow
in the signed arithmetics. This also detects INT_MIN / -1 signed
division. Note, integer promotion rules must be taken into account.
That is, the following is not an overflow:

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Chapter 3:

GCC Command Options 243

signed char a = SCHAR_MAX;
at+;

-fsanitize=bounds
This option enables instrumentation of array bounds. Various out
of bounds accesses are detected. Flexible array members, flexible
array member-like arrays, and initializers of variables with static
storage are not instrumented.

-fsanitize=bounds-strict
This option enables strict instrumentation of array bounds. Most
out of bounds accesses are detected, including flexible array mem-
bers and flexible array member-like arrays. Initializers of variables
with static storage are not instrumented.

-fsanitize=alignment
This option enables checking of alignment of pointers when they are
dereferenced, or when a reference is bound to insufficiently aligned
target, or when a method or constructor is invoked on insufficiently
aligned object.

-fsanitize=object-size
This option enables instrumentation of memory references using the
__builtin_object_size function. Various out of bounds pointer
accesses are detected.

-fsanitize=float-divide-by-zero
Detect floating-point division by zero. Unlike other similar
options, ‘~fsanitize=float-divide-by-zero’ is not enabled by
‘~-fsanitize=undefined’, since floating-point division by zero can
be a legitimate way of obtaining infinities and NaNs.

-fsanitize=float-cast-overflow
This option enables floating-point type to integer conversion check-
ing. We check that the result of the conversion does not overflow.
Unlike other similar options, ‘~fsanitize=float-cast-overflow’
is not enabled by ‘-fsanitize=undefined’. This option does not
work well with FE_INVALID exceptions enabled.

-fsanitize=nonnull-attribute
This option enables instrumentation of calls, checking whether null
values are not passed to arguments marked as requiring a non-null
value by the nonnull function attribute.

-fsanitize=returns—-nonnull-attribute
This option enables instrumentation of return statements in func-
tions marked with returns_nonnull function attribute, to detect
returning of null values from such functions.

-fsanitize=bool
This option enables instrumentation of loads from bool. If a value
other than 0/1 is loaded, a run-time error is issued.

244

Using the GNU Compiler Collection (GCC)

-fsanitize=enum
This option enables instrumentation of loads from an enum type.
If a value outside the range of values for the enum type is loaded,
a run-time error is issued.

-fsanitize=vptr
This option enables instrumentation of C++ member function calls,
member accesses and some conversions between pointers to base
and derived classes, to verify the referenced object has the correct
dynamic type.

-fsanitize=pointer-overflow
This option enables instrumentation of pointer arithmetics. If the
pointer arithmetics overflows, a run-time error is issued.

-fsanitize=builtin
This option enables instrumentation of arguments to selected
builtin functions. If an invalid value is passed to such arguments,
a run-time error is issued. KE.g. passing 0 as the argument to
__builtin_ctz or __builtin_clz invokes undefined behavior
and is diagnosed by this option.

While ‘-ftrapv’ causes traps for signed overflows to be emitted,
‘~fsanitize=undefined’ gives a diagnostic message. This currently works
only for the C family of languages.

-fno-sanitize=all

This option disables all previously enabled sanitizers. ‘~-fsanitize=all’ is not
allowed, as some sanitizers cannot be used together.

—-fasan-shadow-offset=number

This option forces GCC to use custom shadow offset in AddressSanitizer checks.
It is useful for experimenting with different shadow memory layouts in Kernel
AddressSanitizer.

-fsanitize-sections=s1,s2,...

Sanitize global variables in selected user-defined sections. si may contain wild-
cards.

-fsanitize-recover[=opts]

‘~-fsanitize-recover=’ controls error recovery mode for sanitizers mentioned
in comma-separated list of opts. Enabling this option for a sanitizer component
causes it to attempt to continue running the program as if no error happened.
This means multiple runtime errors can be reported in a single program run,
and the exit code of the program may indicate success even when errors have
been reported. The ‘-fno-sanitize-recover=’" option can be used to alter
this behavior: only the first detected error is reported and program then exits
with a non-zero exit code.

Y

Currently this feature only works for ‘-fsanitize=undefined’ (and its
suboptions except for ‘~fsanitize=unreachable’ and ‘-fsanitize=return’),
‘~-fsanitize=float-cast-overflow’, ‘-fsanitize=float-divide-by-zero’,

Chapter 3: GCC Command Options 245

‘~fsanitize=bounds-strict’, ‘~fsanitize=kernel-address’ and
‘~fsanitize=address’. For these sanitizers error recovery is turned on by
default, except ‘-fsanitize=address’, for which this feature is experimental.
‘~fsanitize-recover=all’ and ‘-fno-sanitize-recover=all’ is also
accepted, the former enables recovery for all sanitizers that support it, the
latter disables recovery for all sanitizers that support it.

Even if a recovery mode is turned on the compiler side, it needs to be also
enabled on the runtime library side, otherwise the failures are still fatal. The
runtime library defaults to halt_on_error=0 for ThreadSanitizer and Unde-
finedBehaviorSanitizer, while default value for AddressSanitizer is halt_on_
error=1. This can be overridden through setting the halt_on_error flag in
the corresponding environment variable.
Syntax without an explicit opts parameter is deprecated. It is equivalent to
specifying an opts list of:
undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
-fsanitize-address-use-after-scope
Enable sanitization of local variables to detect use-after-scope bugs. The option
sets ‘~fstack-reuse’ to ‘none’.

-fsanitize-undefined-trap-on-error
The ‘-fsanitize-undefined-trap-on-error’ option instructs the compiler to
report undefined behavior using __builtin_trap rather than a libubsan li-
brary routine. The advantage of this is that the libubsan library is not needed
and is not linked in, so this is usable even in freestanding environments.

-fsanitize-coverage=trace-pc
Enable coverage-guided fuzzing code instrumentation. Inserts a call to __
sanitizer_cov_trace_pc into every basic block.

-fsanitize-coverage=trace-cmp
Enable dataflow guided fuzzing code instrumentation. Inserts a call
to __sanitizer_cov_trace_cmpl, __sanitizer_cov_trace_cmp2,
__sanitizer_cov_trace_cmp4 or __sanitizer_cov_trace_cmp8 for integral
comparison with both operands variable or __sanitizer_cov_trace_
const_cmpl, __sanitizer_cov_trace_const_cmp2, __sanitizer_cov_
trace_const_cmp4 or __sanitizer_cov_trace_const_cmp8 for integral
comparison with one operand constant, __sanitizer_cov_trace_cmpf
or __sanitizer_cov_trace_cmpd for float or double comparisons and
__sanitizer_cov_trace_switch for switch statements.

-fcf-protection=[full|branch|return|none|check]

Enable code instrumentation of control-flow transfers to increase program se-
curity by checking that target addresses of control-flow transfer instructions
(such as indirect function call, function return, indirect jump) are valid. This
prevents diverting the flow of control to an unexpected target. This is intended
to protect against such threats as Return-oriented Programming (ROP), and
similarly call/jmp-oriented programming (COP/JOP).

The value branch tells the compiler to implement checking of validity of control-
flow transfer at the point of indirect branch instructions, i.e. call/jmp instruc-

246

Using the GNU Compiler Collection (GCC)

tions. The value return implements checking of validity at the point of return-
ing from a function. The value full is an alias for specifying both branch and
return. The value none turns off instrumentation.

The value check is used for the final link with link-time optimization (LTO). An
error is issued if LTO object files are compiled with different ‘-fcf-protection’
values. The value check is ignored at the compile time.

The macro __CET__ is defined when ‘-fcf-protection’ is used. The first bit

of __CET__ is set to 1 for the value branch and the second bit of __CET__ is set
to 1 for the return.

You can also use the nocf_check attribute to identify which functions and calls
should be skipped from instrumentation (see Section 6.33 [Function Attributes]
page 552).

Currently the x86 GNU /Linux target provides an implementation based on Intel
Control-flow Enforcement Technology (CET) which works for 1686 processor or
newer.

9

-fharden-compares

For every logical test that survives gimple optimizations and is not the condition
in a conditional branch (for example, conditions tested for conditional moves,
or to store in boolean variables), emit extra code to compute and verify the
reversed condition, and to call __builtin_trap if the results do not match.
Use with ‘~fharden-conditional-branches’ to cover all conditionals.

—-fharden-conditional-branches

For every non-vectorized conditional branch that survives gimple optimizations,
emit extra code to compute and verify the reversed condition, and to call __
builtin_trap if the result is unexpected. Use with ‘~fharden-compares’ to
cover all conditionals.

-fstack-protector

Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
or equal to 8 bytes. The guards are initialized when a function is entered and
then checked when the function exits. If a guard check fails, an error message
is printed and the program exits. Only variables that are actually allocated
on the stack are considered, optimized away variables or variables allocated in
registers don’t count.

-fstack-protector-all

Like ‘-fstack-protector’ except that all functions are protected.

-fstack-protector-strong

Like ‘~fstack-protector’ but includes additional functions to be protected —
those that have local array definitions, or have references to local frame ad-
dresses. Only variables that are actually allocated on the stack are considered,
optimized away variables or variables allocated in registers don’t count.

Chapter 3: GCC Command Options 247

-fstack-protector-explicit
Like ‘~fstack-protector’ but only protects those functions which have the
stack_protect attribute.

—-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but you only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.

Note that this switch does not actually cause checking to be done; the operating
system or the language runtime must do that. The switch causes generation of
code to ensure that they see the stack being extended.

You can additionally specify a string parameter: ‘no’ means no checking,
‘generic’ means force the use of old-style checking, ‘specific’ means use the
best checking method and is equivalent to bare ‘~-fstack-check’.

Old-style checking is a generic mechanism that requires no specific target sup-
port in the compiler but comes with the following drawbacks:

1. Modified allocation strategy for large objects: they are always allocated
dynamically if their size exceeds a fixed threshold. Note this may change
the semantics of some code.

2. Fixed limit on the size of the static frame of functions: when it is topped
by a particular function, stack checking is not reliable and a warning is
issued by the compiler.

3. Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.

Note that old-style stack checking is also the fallback method for ‘specific’ if
no target support has been added in the compiler.

‘~-fstack-check=’is designed for Ada’s needs to detect infinite recursion and
stack overflows. ‘specific’ is an excellent choice when compiling Ada code.
It is not generally sufficient to protect against stack-clash attacks. To protect
against those you want ‘~fstack-clash-protection’.

-fstack-clash-protection
Generate code to prevent stack clash style attacks. When this option is enabled,
the compiler will only allocate one page of stack space at a time and each page
is accessed immediately after allocation. Thus, it prevents allocations from
jumping over any stack guard page provided by the operating system.

Most targets do not fully support stack clash protection. However, on those
targets ‘-fstack-clash-protection’ will protect dynamic stack allocations.
‘~-fstack-clash-protection’ may also provide limited protection for static
stack allocations if the target supports ‘~fstack-check=specific’.

248 Using the GNU Compiler Collection (GCC)

-fstack-limit-register=reg

-fstack-limit-symbol=sym

-fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger stack is
required, a signal is raised at run time. For most targets, the signal is raised
before the stack overruns the boundary, so it is possible to catch the signal
without taking special precautions.

For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ‘~-fstack-limit-symbol=__stack_limit’
and ‘-Wl,--defsym,__stack_limit=0x7£fe0000’ to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.

You can locally override stack limit checking by using the no_stack_limit
function attribute (see Section 6.33 [Function Attributes], page 552).

-fsplit-stack
Generate code to automatically split the stack before it overflows. The resulting
program has a discontiguous stack which can only overflow if the program is
unable to allocate any more memory. This is most useful when running threaded
programs, as it is no longer necessary to calculate a good stack size to use for
each thread. This is currently only implemented for the x86 targets running
GNU/Linux.

When code compiled with ‘-fsplit-stack’ calls code compiled without
‘~fsplit-stack’, there may not be much stack space available for the
latter code to run. If compiling all code, including library code, with
‘~fsplit-stack’ is not an option, then the linker can fix up these calls so that
the code compiled without ‘~fsplit-stack’ always has a large stack. Support
for this is implemented in the gold linker in GNU binutils release 2.21 and
later.

-fvtable-verify=[std|preinit|none]
This option is only available when compiling C++ code. It turns on (or off, if
using ‘~fvtable-verify=none’) the security feature that verifies at run time,
for every virtual call, that the vtable pointer through which the call is made
is valid for the type of the object, and has not been corrupted or overwritten.
If an invalid vtable pointer is detected at run time, an error is reported and
execution of the program is immediately halted.

This option causes run-time data structures to be built at program startup,
which are used for verifying the vtable pointers. The options ‘std’ and
‘preinit’ control the timing of when these data structures are built. In both
cases the data structures are built before execution reaches main. Using
‘~fvtable-verify=std’ causes the data structures to be built after shared
libraries have been loaded and initialized. ‘~fvtable-verify=preinit’ causes
them to be built before shared libraries have been loaded and initialized.

If this option appears multiple times in the command line with different values
specified, ‘none’ takes highest priority over both ‘std’ and ‘preinit’; ‘preinit’
takes priority over ‘std’.

Chapter 3: GCC Command Options 249

-fvtv-debug

When used in conjunction with ‘-fvtable-verify=std’ or
‘~fvtable-verify=preinit’, causes debug versions of the runtime
functions for the vtable verification feature to be called. This flag also causes
the compiler to log information about which vtable pointers it finds for each
class. This information is written to a file named ‘vtv_set_ptr_data.log’
in the directory named by the environment variable VIV_LOGS_DIR if that is
defined or the current working directory otherwise.

Note: This feature appends data to the log file. If you want a fresh log file, be
sure to delete any existing one.

—-fvtv-counts

This is a debugging flag. When wused in conjunction with
‘~fvtable-verify=std’ or ‘-fvtable-verify=preinit’, this causes
the compiler to keep track of the total number of virtual calls it encounters
and the number of verifications it inserts. It also counts the number of calls to
certain run-time library functions that it inserts and logs this information for
each compilation unit. The compiler writes this information to a file named
‘vtv_count_data.log’ in the directory named by the environment variable
VTV_LOGS_DIR if that is defined or the current working directory otherwise. It
also counts the size of the vtable pointer sets for each class, and writes this
information to ‘vtv_class_set_sizes.log’ in the same directory.

Note: This feature appends data to the log files. To get fresh log files, be sure
to delete any existing ones.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions are
called with the address of the current function and its call site. (On some plat-
forms, __builtin_return_address does not work beyond the current function,
so the call site information may not be available to the profiling functions oth-
erwise.)
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls indicate where, conceptually, the inline function is
entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use extern inline in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)

250

Using the GNU Compiler Collection (GCC)

A function may be given the attribute no_instrument_function, in which case
this instrumentation is not done. This can be used, for example, for the profiling
functions listed above, high-priority interrupt routines, and any functions from
which the profiling functions cannot safely be called (perhaps signal handlers, if
the profiling routines generate output or allocate memory). See Section 6.33.1
[Common Function Attributes], page 553.

-finstrument-functions-exclude-file-list=file,file,...

Set the list of functions that are excluded from instrumentation (see the de-
scription of ‘-finstrument-functions’). If the file that contains a function
definition matches with one of file, then that function is not instrumented. The
match is done on substrings: if the file parameter is a substring of the file name,
it is considered to be a match.

For example:

-finstrument-functions-exclude-file-list=/bits/stl,include/sys
excludes any inline function defined in files whose pathnames contain
‘/bits/stl’ or ‘include/sys’.
If, for some reason, you want to include letter ¢, in one of sym, write ‘\,’. For
example, ‘-finstrument-functions-exclude-file-list=’\,\,tmp’’ (note
the single quote surrounding the option).

—finstrument-functions-exclude-function-list=sym, sym,...

This is similar to ‘-finstrument-functions-exclude-file-1list’, but this
option sets the list of function names to be excluded from instrumentation.
The function name to be matched is its user-visible name, such as
vector<int> blah(const vector<int> &), not the internal mangled name
(e.g., _Z4blahRSt6vectorIiSaIliEE). The match is done on substrings: if the
sym parameter is a substring of the function name, it is considered to be
a match. For C99 and C++ extended identifiers, the function name must be
given in UTF-8, not using universal character names.

-fpatchable-function-entry=N[,M]

Generate N NOPs right at the beginning of each function, with the function
entry point before the Mth NOP. If M is omitted, it defaults to 0 so the func-
tion entry points to the address just at the first NOP. The NOP instructions
reserve extra space which can be used to patch in any desired instrumenta-
tion at run time, provided that the code segment is writable. The amount of
space is controllable indirectly via the number of NOPs; the NOP instruction
used corresponds to the instruction emitted by the internal GCC back-end in-
terface gen_nop. This behavior is target-specific and may also depend on the
architecture variant and/or other compilation options.

For run-time identification, the starting addresses of these areas, which corre-
spond to their respective function entries minus M, are additionally collected
in the __patchable_function_entries section of the resulting binary.

Note that the wvalue of __attribute__ ((patchable_function_
entry (N,M))) takes precedence over command-line option
‘~fpatchable-function-entry=N,M. This can be wused to increase

Chapter 3: GCC Command Options 251

the area size or to remove it completely on a single function. If N=0, no pad
location is recorded.

The NOP instructions are inserted at—and maybe before, depending on M—the
function entry address, even before the prologue.

The maximum va