Using the GNU Compiler Collection (GCC)

Using the GNU Compiler Collection

by Richard M. Stallman and the GCC Developer Community

Last updated 23 May 2004

for GCC 3.4.4

For GCC Version 3.4.4

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@Qgnu.org
Free Software Foundation Orders: sales@gnu.org

59 Temple Place Suite 330 Tel 617-542-5942

Boston, MA 02111-1307 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction s v v v oo v v v ettt ittt iiii it nennns 1
1 Programming Languages Supported by GCC 3
2 Language Standards Supported by GCC)
3 GCC Command Options « v v v v v v v v v v vveeeooeessssns 9
4 C Implementation-defined behavior 175
5 Extensions to the C Language Family 179
6 Extensions to the C++ Language .« v v o0 v v v e oo onn. 301
7 GNU Objective-C runtime features. . « o v e o v e v e v v v e 313
8 Binary Compatibility « « o oo oo v v i i i i i i 319
9 gcov—a Test Coverage Programcc000u... 323
10 Known Causes of Trouble with GCC 331
11 Reporting Bugs e v v v v v v vt v i v iiiiieeeeeeeennnns 351
12 How To Get Help with GCCo oo v i i i i i i i iinnn.. 353
13 Contributing to GCC Development + .. ooveveeee... 355
Funding Free Software oot v it ennnnn 357
The GNU Project and GNU/Linux e o o e o v v e v v e v veeevnnns 359
GNU GENERAL PUBLICLICENSE v e v et v e e e v e n e 361
GNU Free Documentation License « « v v v v v v v v v e e v vennn.. 367
Contributors to GCC . v v v v v ettt ittt i e s nnnnns 375
Option Index . o v v v v ettt e e ettt it eennnnnnsnns 387

Keyword Index v oo oo v v v e e it i i i iiiineeeeeennnns 399

11

Using the GNU Compiler Collection (GCC)

Table of Contents

Introduction..........c.c.iiiiiieneeeennnn. 1

1 Programming Languages Supported by GCC

2 Language Standards Supported by GCC 5

3 GCC Command Options 9
3.1 Option SUMMATrYt 9
3.2 Options Controlling the Kind of Output.................... 18
3.3 Compiling C++ Programscooiiiiin... 21
3.4 Options Controlling C Dialect 21
3.5 Options Controlling C++ Dialect 25
3.6 Options Controlling Objective-C Dialect.................... 31
3.7 Options to Control Diagnostic Messages Formatting......... 34
3.8 Options to Request or Suppress Warnings 35
3.9 Options for Debugging Your Program or GCC.............. 49
3.10 Options That Control Optimization....................... 56
3.11 Options Controlling the Preprocessor 77
3.12 Passing Options to the Assembler......................... 86
3.13 Options for Linking........... 86
3.14 Options for Directory Search 89
3.15 Specifying subprocesses and the switches to pass to them ... 90
3.16 Specifying Target Machine and Compiler Version 97
3.17 Hardware Models and Configurations 97

3.17.1 MO680x0 Optionsoovveieee e 98
3.17.2 M68hclx Optionsoooveiinei i, 100
3173 VAX Options.......cooiiieiiiiiiiiii.. 101
3.17.4 SPARC Options...........coiiiiiinnnnnai. 101
3175 ARM Options.oovevin e 106
3.17.6 MNI10300 Options.covuiineeiineianaan. 110
3.17.7 M32R/D Optionscoovveiiiiiiiienieann... 110
3.17.8 IBM RS/6000 and PowerPC Options 112
3.17.9 Darwin Options.......... ..., 121
3.17.10 MIPS Optionsvvini i 123
3.17.11 Intel 386 and AMD x86-64 Options............... 127
3.17.12 HPPA Options. ... 134
3.17.13 Intel 960 Options ..., 137
3.17.14 DEC Alpha Options............coooiiiinnoa... 138
3.17.15 DEC Alpha/VMS Options.................c...... 142
3.17.16 H8/300 Options.ovvurieiinenunnenna.n. 142

3.17.17 SH Options. ... 143

iii

iv

Using the GNU Compiler Collection (GCC)

3.17.18 Options for System V 144
3.17.19 TMS320C3x/C4x Optionsccovvuueenn... 144
3.17.20 V850 Options.ooouiiiiinii i 146
31721 ARCOptions.........coouiiiinnniian.. 148
3.17.22 NS32K Optionsoovmeiinneineenn. .. 148
3.17.23 AVR Options 150
3.17.24 MCore Optionscovviiineiii . 151
3.17.25 TA-64 Optionsoouiiiiiiiinn 151
3.17.26 D30V Options ...t 153
3.17.27 S/390 and zSeries Options 154
3.17.28 CRISOptions.ooviiii e 155
3.17.29 MMIX Options ... 157
3.17.30 PDP-110ptions ..., 158
3.17.31 Xstormyl6 Options, 159
3.17.32 FRV Options ..., 159
3.17.33 Xtensa Optionsoo oo, 162
3.18 Options for Code Generation Conventions................ 163
3.19 Environment Variables Affecting GCC 168
3.20 Using Precompiled Headers 171
3.21 Running Protoize.......... 172
C Implementation-defined behavior....... 175
4.1 Translation 175
4.2 Environment 175
4.3 Identifiers........ ... 175
4.4 CharacterSttt et e 175
4.5 Integers. 176
4.6 Floating point......... ... o i 176
4.7 Arrays and pointers i 177
4.8 Hints 177
4.9 Structures, unions, enumerations, and bit-fields 177
4.10 Qualifiers 178
4.11 Preprocessing directives........... ..., 178
4.12 Library functions............. ... i 178
4.13 Architecture 178
4.14 Locale-specific behavior................................. 178
Extensions to the C Language Family..... 179
5.1 Statements and Declarations in Expressions 179
5.2 Locally Declared Labels.............. 180
5.3 Labelsas Values............. ... i, 181
5.4 Nested Functions............. 182
5.5 Constructing Function Calls.............................. 184
5.6 Referring to a Type with typeof 184
5.7 Generalized Livalues, 186
5.8 Conditionals with Omitted Operands 187
5.9 Double-Word Integers.............o . 187
5.10 Complex Numbers.t 187

5.11 Hex Floats. it 188

5.12 Arrays of Length Zero 188
5.13 Structures With No Members 189
5.14 Arrays of Variable Length...................., 190
5.15 Macros with a Variable Number of Arguments. 191
5.16 Slightly Looser Rules for Escaped Newlines............... 191
5.17 Non-Lvalue Arrays May Have Subscripts 192
5.18 Arithmetic on void- and Function-Pointers............... 192
5.19 Non-Constant Initializers................................ 192
5.20 Compound Literals............... 192
5.21 Designated Initializers 193
5.22 Case Ranges 194
5.23 Cast toa Union Type..........cooiiiiiiiiii ... 195
5.24 Mixed Declarations and Code 195
5.25 Declaring Attributes of Functions........................ 195
5.26 Attribute Syntax 206
5.27 Prototypes and Old-Style Function Definitions............ 209
5.28 C++ Style Comments 209
5.29 Dollar Signs in Identifier Names 210
5.30 The Character inConstants........................ 210
5.31 Inquiring on Alignment of Types or Variables............. 210
5.32 Specifying Attributes of Variables........................ 210

5.32.1 M32R/D Variable Attributes...................... 214

5.32.2 1386 Variable Attributes 215
5.33 Specifying Attributes of Types 215

5.33.1 1386 Type Attributes............................. 219
5.34 An Inline Function is As Fast Asa Macro................ 219
5.35 Assembler Instructions with C Expression Operands 221

5.35.1 Sizeofanasm............ ... i 225

5.35.2 1386 floating point asm operands 225
5.36 Constraints for asm Operands 226

5.36.1 Simple Constraints, 227

5.36.2 Multiple Alternative Constraints 229

5.36.3 Constraint Modifier Characters.................... 229

5.36.4 Constraints for Particular Machines 230
5.37 Controlling Names Used in Assembler Code 242
5.38 Variables in Specified Registers.......................... 242

5.38.1 Defining Global Register Variables................. 242

5.38.2 Specifying Registers for Local Variables............ 244
5.39 Alternate Keywords i 244
5.40 Incomplete enum Typescooo ... 245
5.41 Function Names as Strings, 245
5.42 Getting the Return or Frame Address of a Function....... 246
5.43 Using vector instructions through built-in functions 247
5.44 Other built-in functions provided by GCC................ 248
5.45 Built-in Functions Specific to Particular Target Machines.. 254

5.45.1 Alpha Built-in Functions 254

5.45.2 ARM Built-in Functions 255

vi

Using the GNU Compiler Collection (GCC)

5.45.3 X86 Built-in Functions 258
5.45.4 PowerPC AltiVec Built-in Functions............... 262
5.46 Pragmas Accepted by GCC 294
546.1 ARM Pragmas......... 294
5.46.2 RS/6000 and PowerPC Pragmas 294
5.46.3 Darwin Pragmas................. 295
5.46.4 Solaris Pragmas............ i, 295
5.46.5 Tru64 Pragmas 295
5.47 Unnamed struct/union fields within structs/unions. 296
5.48 Thread-Local Storage.............. 296
5.48.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage
.. 297
5.48.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage
.. 297
Extensions to the C++ Language.......... 301
6.1 Minimum and Maximum Operators in C++................ 301
6.2 When is a Volatile Object Accessed? 301
6.3 Restricting Pointer Aliasing 302
6.4 Vague Linkage 303
6.5 #pragma interface and implementation 304
6.6 Where’s the Template? 305
6.7 Extracting the function pointer from a bound pointer to member
function 307
6.8 C++-Specific Variable, Function, and Type Attributes 308
6.9 Strong Using..........oouuiinni i 308
6.10 Offsetof. 309
6.11 Java Exceptions............. ... i 309
6.12 Deprecated Features................ 310
6.13 Backwards Compatibility, 310
GNU Objective-C runtime features....... 313
7.1 +load: Executing code before main 313
7.1.1 What you can and what you cannot do in +load..... 314
7.2 Typeencodingooouniiiiniiii ... 315
7.3 Garbage Collection o i, 316
7.4 Constant string objects i 317
7.5 compatibility_alias............ 318
Binary Compatibility 319
gcov—a Test Coverage Program 323
9.1 Introduction to gCov...........cooiiiiinii... 323
9.2 InvoKing @COVttt 323
9.3 Using gcov with GCC Optimization 328

9.4 Brief description of gcov datafiles........................ 329

10 Known Causes of Trouble with GCC..... 331

10.1 Actual Bugs We Haven’t Fixed Yet 331

10.2 Cross-Compiler Problems 331

10.3 Interoperation............... ..., 331

10.4 Problems Compiling Certain Programs................... 335

10.5 Incompatibilities of GCC........... 335

10.6 Fixed Header Files it 338

10.7 Standard Libraries............... .. i 339

10.8 Disappointments and Misunderstandings 339

10.9 Common Misunderstandings with GNU C++.............. 340

10.9.1 Declare and Define Static Members................ 340

10.9.2 Name lookup, templates, and accessing members of base

ClaSSES . oot 341

10.9.3 Temporaries May Vanish Before You Expect 342

10.9.4 Implicit Copy-Assignment for Virtual Bases........ 343

10.10 Caveats of using protoize, 344

10.11 Certain Changes We Don’t Want to Make............... 345

10.12 Warning Messages and Error Messages.................. 348

11 Reporting Bugs 351

11.1 Have You Found a Bug? 351

11.2 How and where to Report Bugs.......................... 351

12 How To Get Help with GCC............ 353

13 Contributing to GCC Development...... 355

Funding Free Software 357

The GNU Project and GNU/Linux 359

GNU GENERAL PUBLIC LICENSE......... 361

Preamble 361
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION.................. 362

How to Apply These Terms to Your New Programs............. 366

GNU Free Documentation License........... 367

ADDENDUM: How to use this License for your documents. 373

Contributors to GCC 375

OptionIndexo, 387

Keyword Index, 399

vii

viii Using the GNU Compiler Collection (GCC)

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to GCC version 3.4.4. The internals
of the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See section “Introduction” in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, and Objective-C languages.

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 21.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-3.4/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=is509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in a Technical Corrigendum published
in 2001. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 179.
Use of the ‘~std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘~std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The

6 Using the GNU Compiler Collection (GCC)

standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 21.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 10.7 [Standard Libraries|, page 339.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Some older ports of GCC are configured to use the BSD bcopy, bzero
and bcmp functions instead, but this is deprecated for new ports. Finally, if __builtin_
trap is used, and the target does not implement the trap pattern, then GCC will emit a
call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C. The most authoritative manual is
“Object-Oriented Programming and the Objective-C Language”, available at a number of
web sites

e http://developer.apple.com/techpubs/macosx/Cocoa/0ObjectiveC/ is a recent
version

e http://www.toodarkpark.org/computers/objc/ is an older example

e http://www.gnustep.org has additional useful information

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language

is documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or HTML
format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “The GNU Fortran Language” in Using and Porting GNU Fortran, for details
of the Fortran language supported by GCC.

Chapter 2: Language Standards Supported by GCC 7

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

Using the GNU Compiler Collection (GCC)

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘-c¢’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 21, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-4 -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘~L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W'—for example,

‘~fforce-mem’, ‘-fstrength-reduce’, ‘~Wformat’ and so on. Most of these have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This
manual documents only one of these two forms, whichever one is not the default.

See [Option Index], page 387, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Qverall Options
See Section 3.2 [Options Controlling the Kind of Output], page 18.

-¢ -8 -E -o file -pipe -pass-exit-codes
-x language -v -### --help --target-help --version

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 21.
-ansi -std=standard -aux-info filename
-fno-asm -fno-builtin -fno-builtin-function
-fhosted -ffreestanding -fms-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
-fwritable-strings

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 25.

10 Using the GNU Compiler Collection (GCC)

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -fno-const-strings
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n
-fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -Wabi -Wctor-dtor-privacy
-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo

Objective-C' Language Options
See Section 3.6 [Options Controlling Objective-C Dialect], page 31.

-fconstant-string-class=class—-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-exceptions
-freplace-objc-classes
-fzero-link
-gen-decls
-Wno-protocol -Wselector -Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 34.

-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 35.

-fsyntax-only -pedantic -pedantic-errors

-w -Wextra -Wall -Waggregate-return

-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wno-div-by-zero -Wendif-labels
-Werror -Werror-implicit-function-declaration
-Wfloat-equal -Wformat -Wformat=2
-Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wimport -Wno-import -Winit-self -Winline
-Wno-invalid-offsetof -Winvalid-pch
-Wlarger-than-len -Wlong-long

-Wmain -Wmissing-braces

-Wmissing-format-attribute -Wmissing-noreturn
-Wno-multichar -Wnonnull -Wpacked -Wpadded
-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wstrict-aliasing

-Wswitch -Wswitch-default -Wswitch-enum
-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized

Chapter 3: GCC Command Options 11

-Wunknown-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs -Wold-style-definition
-Wstrict-prototypes -Wtraditiomnal
-Wdeclaration-after-statement

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 49.

-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-unnumbered -fdump-translation-unit[-n]
-fdump-class-hierarchy[-n]
-fdump-tree-original[-n]
-fdump-tree-optimized|-n]
-fdump-tree-inlined[-n]
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -fmem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n
-ftest-coverage -ftime-report
-g —glevel -gcoff -gdwarf-2
-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-prog-name=program -print-search-dirs -Q
-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization], page 56.

-falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n
-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize |}
-fbranch-target-load-optimize2 -fcaller-saves —-fcprop-registers
-fcse-follow-jumps -fcse-skip-blocks -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -fforce-mem -ffunction-sections
-fgcse -fgcse-1m -fgcse-sm -fgcse-las -floop-optimize
-fcrossjumping -fif-conversion -fif-conversion2
-finline-functions -finline-limit=n -fkeep-inline-functions
-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmove-all-movables -fnew-ra -fno-branch-count-reg
-fno-default-inline -fno-defer-pop
-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -ffinite-math-only
-fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays
-fprofile-generate -fprofile-use
-freduce-all-givs -fregmove -frename-registers
-freorder-blocks -freorder-functions
-frerun-cse-after-loop -frerun-loop-opt
-frounding-math -fschedule-insns -fschedule-insns2
-fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous
-fsched-stalled-insns=n -sched-stalled-insns-dep=n

12 Using the GNU Compiler Collection (GCC)

-fsched2-use-superblocks

-fsched2-use-traces -fsignaling-nans
-fsingle-precision-constant

-fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps
-funroll-all-loops -funroll-loops -fpeel-loops
-funswitch-loops -fold-unroll-loops -fold-unroll-all-loops
--param name=value -0 -00 -01 -02 -03 -0s

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 77.

-Aquestion=answer
-A-question|=answer]|

-C -dD -dI -dM -dN

-Dmacro[=defn| -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -Umacro -Wp,option
-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 86.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 86.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 89.

-Bprefix -Idir -I- -Ldir -specs=file

Target Options
See Section 3.16 [Target Options|, page 97.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 97.
M680x0 Options

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020
-mnobitfield -mrtd -mshort -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library

M68hcix Options

-m6811 -m6812 -m68hcll -m68hcl12 -m68hcsl2
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=count

VAX Options

Chapter 3: GCC Command Options

-mg -mgnu -munix

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-m32 -m64 -mapp-regs -—mno-app-regs
-mfaster-structs -mno-faster-structs
-mflat -mno-flat -mfpu -mno-fpu
-mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis
-mcypress -mf930 -mf934
-msparclite -msupersparc -mv8 -threads -pthreads

ARM Options

-mapcs-frame -mno-apcs-frame

-mapcs-26 -mapcs-32

-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float

-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog

-mlittle-endian -mbig-endian -mwords-little-endian
-malignment-traps -mno-alignment-traps
-msoft-float -mhard-float -mfpe

-mthumb-interwork -mno-thumb-interwork

-mcpu=name -march=name -mfpe=name
-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking

MN10300 Options

-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mno-crt0 -mrelax

MS32R /D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

RS/6000 and PowerPC Options

Using the GNU Compiler Collection (GCC)

-mcpu=cpu-type

-mtune=cpu-type

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-1lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic

-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=altivec -mabi=no-altivec

-mabi=spe -mabi=no-spe

-misel=yes -misel=no

-mspe=yes -msSpe=no

-mfloat-gprs=yes -mfloat-gprs=no

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -mwindiss -G num -pthread

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64
-mips16 -mno-mips16 -mabi=abi -mabicalls -mno-abicalls
-mxgot -mno-xgot -membedded-pic -mno-embedded-pic
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float

Chapter 3: GCC Command Options

-msingle-float -mdouble-float -mint64 -mlong64 -mlong32
-Gnum -membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs

-mrnames -mno-rnames

-mcheck-zero-division -mno-check-zero-division
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-sbl -mno-fix-sbl -mflush-func=func
-mno-flush-func -mbranch-likely -mno-branch-likely

1386 and x86-64 Options

-mtune=cpu-type -march=cpu-type

-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num

-mmmx -msse -msse2 -msse3 -m3dnow

-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -momit-leaf-frame-pointer
-mno-red-zone -mno-tls-direct-seg-refs

-mcmodel=code-model

-m32 -m64

HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-nolibdld -static -threads

Intel 960 Options

-mcpu-type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options

-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data

Using the GNU Compiler Collection (GCC)

-msmall-text -mlarge-text
-mmemory-latency=time
DEC Alpha/VMS Options
-mvms-return-codes
H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300
SH Options
-ml -m2 -m2e -m3 -m3e
-m4-nofpu -mé4-single-only -m4-single -m4
-mb-64media -m5-64media-nofpu
-m5-32media -m5-32media-nofpu
-m5-compact -mb5-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mnomacsave
-mieee -misize -mpadstruct -mspace
-mprefergot -musermode
System V Options
-Qy -Qn -YP,paths -Ym,dir
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section
TMS3820C3x/Chx Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e1l
-mv850e
-mv850 -mbig-switch

NS32K Options

-m32032 -m32332 -m32532 -m32081 -m32381

-mmult-add -mnomult-add -msoft-float -mrtd -mnortd
-mregparam -mnoregparam -msb -mnosb

-mbitfield -mnobitfield -mhimem -mnohimem

AVR Options
-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment
MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols

Chapter 3: GCC Command Options

-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

1A-64 Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mb-step -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-float-divide-min-latency

-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-dwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -mt -pthread -milp32 -mlp64

D30V Options

S/390

-mextmem -mextmemory -monchip -mno-asm-optimize
-masm-optimize -mbranch-cost=n -mcond-exec=n

and zSeries Options
-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mbackchain -mno-backchain

-msmall-exec -mno-small-exec -mmvcle -—-mno-mvcle

17

-m64 -m31 -mdebug -mno-debug -mesa -mzarch -mfused-madd -mno-fused-madd

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects

-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt

-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi0
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

Xstormyl6 Options

-msim

Xtensa Options

-mconstl16 -mno-constl6
-mfused-madd -mno-fused-madd

-mtext-section-literals -mno-text-section-literals

-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls

FRV Options

-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd
-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move

-mscc -mno-scc -mcond-exec —mno-cond-exec
-mvliw-branch -mno-vliw-branch

18 Using the GNU Compiler Collection (GCC)

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mcpu=cpu

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 163.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables
-finhibit-size-directive -finstrument-functions
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fargument-alias -fargument-noalias
-fargument-noalias-global -fleading-underscore
-ftls-model=model

-ftrapv -fwrapv -fbounds-check

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code which must be preprocessed.
file.i C source code which should not be preprocessed.
file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.
file.h C or C++ header file to be turned into a precompiled header.

file.cc

file.cp

file.cxx

file.cpp

file.CPP

file.c++

file.C C++ source code which must be preprocessed. Note that in ‘. cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.hh
file.H C++ header file to be turned into a precompiled header.

Chapter 3: GCC Command Options 19

file.f

file.for

file.FOR Fortran source code which should not be preprocessed.

file.F

file.fpp

file.FPP Fortran source code which must be preprocessed (with the traditional prepro-
cessor).

file.r Fortran source code which must be preprocessed with a RATFOR preprocessor

(not included with GCC).

See section “Options Controlling the Kind of Output” in Using and Porting
GNU Fortran, for more details of the handling of Fortran input files.

file.ads Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.
file.S Assembler code which must be preprocessed.
other An object file to be fed straight into linking. Any file name with no recognized

suffix is treated this way.
You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objc-cpp-output
assembler assembler-with-cpp

ada

£77 £77-cpp-input ratfor

java

treelang

-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced
by any phase that returned an error indication.

20

Using the GNU Compiler Collection (GCC)

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’, ‘-8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-C

-o file

—###

-pipe

--help

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
‘.ocl, f.i fle’, ete., with ‘Lo’
Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix .c’, “.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If you specify ‘-0’ when compiling more than one input file, or you are producing
an executable file as output, all the source files on the command line will be
compiled at once.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’,
and all preprocessed C source on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘-v’ option is also specified then ‘~-help’ will also be
passed on to the various processes invoked by gcc, so that they can display the
command line options they accept. If the ‘~Wextra’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

Chapter 3: GCC Command Options 21

--target-help
Print (on the standard output) a description of target specific command line
options for each tool.

--version
Display the version number and copyrights of the invoked GCC.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes .C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the
suffix ‘.ii’. GCC recognizes files with these names and compiles them as C++ programs
even if you call the compiler the same way as for compiling C programs (usually with the

name gcc).

However, C++ programs often require class libraries as well as a compiler that understands
the C++ language—and under some circumstances, you might want to compile programs
or header files from standard input, or otherwise without a suffix that flags them as C++
programs. You might also like to precompile a C header file with a ‘.h’ extension to be
used in C++ compilations. g++ is a program that calls GCC with the default language set
to C++, and automatically specifies linking against the C++ library. On many systems, g++
is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 21, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 25, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective-C) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

__asm__, __ ——, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The alternate keywords __asm extension

22

-std=

Using the GNU Compiler Collection (GCC)

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options|, page 35.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

3

Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.44 [Other built-in functions provided by GCC], page 248,
for details of the functions affected.

Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values
are

‘c89’
‘1509899:1990’
ISO C90 (same as ‘-ansi’).

‘1509899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x
‘1509899:1999’
‘1509899:199x’
ISO (C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-3.4/c99status.html for more in-
formation. The names ‘c9x’ and ‘is09899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 fea-
tures).

)

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as
‘-ansi’, except that features that were not in ISO C90 but are in the specified
version (for example, ‘//’ comments and the inline keyword in ISO C99) are
not disabled.

Chapter 3: GCC Command Options 23

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

—aux—-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

—-fhosted

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.44 [Other built-in functions provided by GCC], page 248, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.

With the ‘-fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
this is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘~fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library

24 Using the GNU Compiler Collection (GCC)

is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding
Assert that compilation takes place in a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘~std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional

-traditional-cpp
Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

Chapter 3: GCC Command Options 25

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them.
This is for compatibility with old programs which assume they can write into
string constants.

Writing into string constants is a very bad idea; “constants” should be constant.

This option is deprecated.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

gt++ -g —frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even

26 Using the GNU Compiler Collection (GCC)

without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘~fno-const-strings’, you cannot actually modify the value of a string con-
stant, unless you also use ‘~fwritable-strings’.

This option might be removed in a future release of G++. For maximum porta-
bility, you should structure your code so that it works with string constants
that have type const char *.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t check for violation of exception specifications at runtime. This option
violates the C++ standard, but may be useful for reducing code size in produc-
tion builds, much like defining ‘NDEBUG’. The compiler will still optimize based
on the exception specifications.

-ffor-scope

—-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

Chapter 3: GCC Command Options 27

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.6 [Template
Instantiation], page 305, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘~fpermissive’ will allow some nonconforming code to com-
pile.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 6.6 [Template Instantiation],
page 305, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

28 Using the GNU Compiler Collection (GCC)

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior

code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 56. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities at this point include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void f(); int f1 : 1; };

struct B : public A { int £f2 : 1; };
In this case, G++ will place B: : £2 into the same byte asA: :£1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

Chapter 3: GCC Command Options 29

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void f(); char ci; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual
destructor, yet it declares a non-virtual one. This warning is enabled by ‘-Wall’.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {
int i;
int j;

30 Using the GNU Compiler Collection (GCC)

AQ: § (0, i (D {1}

};
The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.
e [tem 14: Make destructors virtual in base classes.
e Item 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.12 [Deprecated
Features|, page 310.

-Wno-non-template-friend (C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘-Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (‘static_cast’, ‘reinterpret_cast’, and
‘const_cast’) are less vulnerable to unintended effects and much easier to
search for.

Chapter 3: GCC Command Options 31

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void £(Q);

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B* b;
b->f(0);

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.

struct A {
operator int ();
A& operator = (int);

};
main ()
{
A a,b;
a =b;
}

In this example, G++ will synthesize a default ‘A& operator = (const A%);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C Dialect

(NOTE: This manual does not describe the Objective-C language itself. See
http://gcc.gnu.org/readings.html for references.)

This section describes the command-line options that are only meaningful for Objective-
C programs, but you can also use most of the GNU compiler options regardless of what
language your program is in. For example, you might compile a file some_class.m like this:

gcc —-g —-fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C programs; you
can use the other options with any language supported by GCC.

Here is a list of options that are only for compiling Objective-C programs:
-fconstant-string-class=class-name

Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString

32 Using the GNU Compiler Collection (GCC)

if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘-fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @". . ." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver
message:arg]) in this translation unit ensure that the receiver is not nil.
This allows for more efficient entry points in the runtime to be used. Currently,
this option is only available in conjunction with the NeXT runtime on Mac
OS X 10.3 and later.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. Currently, this option is only available
in conjunction with the NeXT runtime on Mac OS X 10.3 and later.
etry {

Othrow expr;

}
Q@catch (AnObjCClass *exc) {

@throw expr;

Qthrow;

}
@catch (AnotherClass *exc) {
}
@catch (id allOthers) {
}
@finally {
@throw expr;
}

The @throw statement may appear anywhere in an Objective-C or Objective-
C++ program; when used inside of a @catch block, the @throw may appear
without an argument (as shown above), in which case the object caught by the
@catch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught
using this scheme. When an object is thrown, it will be caught by the nearest

Chapter 3: GCC Command Options 33

@catch clause capable of handling objects of that type, analogously to how
catch blocks work in C++ and Java. A @catch(id ...) clause (as shown
above) may also be provided to catch any and all Objective-C exceptions not
caught by previous @catch clauses (if any).

The @finally clause, if present, will be executed upon exit from the imme-
diately preceding @try ... @catch section. This will happen regardless of
whether any exceptions are thrown, caught or rethrown inside the @try ...
@catch section, analogously to the behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

e Although currently designed to be binary compatible with NS_HANDLER-
style idioms provided by the NSException class, the new exceptions can
only be used on Mac OS X 10.3 (Panther) and later systems, due to addi-
tional functionality needed in the (NeXT) Objective-C runtime.

e As mentioned above, the new exceptions do not support handling types
other than Objective-C objects. Furthermore, when used from Objective-
C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot @throw an exception from
Objective-C and catch it in C++, or vice versa (i.e., throw ... @catch).

The ‘~fobjc-exceptions’ switch also enables the use of synchronization blocks
for thread-safe execution:
@synchronized (0bjCClass *guard) {

.

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another
thread. If it has, the current thread shall wait until the other thread relinquishes
its lock. Once guard becomes available, the current thread will place its own
lock on it, execute the code contained in the @synchronized block, and finally
relinquish the lock (thereby making guard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks
is allowed, and will cause the guarding object to be unlocked properly.

-freplace-objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior

34 Using the GNU Compiler Collection (GCC)

and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in
the class, even if a method implementation is inherited from the superclass. If
you use the -Wno-protocol option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error is
found during compilation, or because the -fsyntax-only option is being used.

-Wundeclared-selector

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ~-Wselector only performs its checks in the final stage
of compilation. This also enforces the coding style convention that methods and
selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

Chapter 3: GCC Command Options 35

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics—-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics—-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options|, page 25
and Section 3.6 [Objective-C Dialect Options], page 31.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

36

-pedantic-

-W

Using the GNU Compiler Collection (GCC)

should use these escape routes; application programs should avoid them. See
Section 5.39 [Alternate Keywords]|, page 244.

¢

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts

-Wcomment

-Wformat

Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions,
and others specified by format attributes (see Section 5.25 [Function Attributes],
page 195), in the printf, scanf, strftime and strfmon (an X/Open extension,
not in the C standard) families.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘~-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 21.

Chapter 3: GCC Command Options 37

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘-Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k
If ‘“-Wformat’ is specified, also warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args
If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

38

Using the GNU Compiler Collection (GCC)

-Winit-self (C, C++, and Objective-C only)

Warn about uninitialized variables which are initialized with themselves. Note
this option can only be used with the ‘~Wuninitialized’ option, which in turn
only works with ‘-01’ and above.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:
int £(Q)
{
int i = i;
return i;

}

-Wimplicit-int

Warn when a declaration does not specify a type.

-Wimplicit-function-declaration
-Werror-implicit-function-declaration

-Wimplicit

-Wmain

Give a warning (or error) whenever a function is used before being declared.

Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’.

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

nn
-~ A

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)
if (o)
foo O;
else
bar ();
}
In C, every else branch belongs to the innermost possible if statement, which
in this example is 1f (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The

resulting code would look like this:

Chapter 3:

GCC Command Options 39

if (a)

if (b)
foo ();
else
bar O;

}

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.

The C standard defines the order in which expressions in a C program are eval-
uated in terms of sequence points, which represent a partial ordering between
the execution of parts of the program: those executed before the sequence point,
and those executed after it. These occur after the evaluation of a full expression
(one which is not part of a larger expression), after the evaluation of the first
operand of a &&, | |, ? : or , (comma) operator, before a function is called (but
after the evaluation of its arguments and the expression denoting the called
function), and in certain other places. Other than as expressed by the sequence
point rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee have ruled that function calls do
not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C standard specifies that “Between the previous and next se-
quence point an object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be read only to
determine the value to be stored.”. If a program breaks these rules, the results
on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.

The C standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

40 Using the GNU Compiler Collection (GCC)

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about).

-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline
static function is unused.

-Wunused-label
Warn whenever a label is declared but not used.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 210).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 210).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 210).
-Wunused-value
Warn whenever a statement computes a result that is explicitly not used.
To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.

Chapter 3: GCC Command Options 41

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-0’, you simply won’t get these warnings.

If you want to warn about code which uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur only for variables that are candidates for register alloca-
tion. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

{
int x;
switch (y)
{
case 1: x
break;
case 2: x = 4;
break;
case 3: x = b;
¥
foo (x);
}

]
—

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:
{

int save_y;
if (change_y) save_y = y, y = new_y;

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.25 [Function Attributes],
page 195.

42 Using the GNU Compiler Collection (GCC)

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wstrict-aliasing
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in ‘-Wall’.

-Wall All of the above ‘-W options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in Section 3.5 [C++ Dialect
Options|, page 25 and Section 3.6 [Objective-C Dialect Options]|, page 31.

The following ‘-W. ..’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-Wextra (This option used to be called ‘-W’. The older name is still supported, but the
newer name is more descriptive.) Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma, expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i,j]’ will cause a warning,
but ‘x[(void)i, j]’ will not.

e An unsigned value is compared against zero with ‘<’ or ‘>=".

e A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y 7 1 : 0)
<= z’, which is a different interpretation from that of ordinary mathemat-
ical notation.

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e The return type of a function has a type qualifier such as const. Such a
type qualifier has no effect, since the value returned by a function is not an
lvalue. (But don’t warn about the GNU extension of volatile void return
types. That extension will be warned about if ‘-pedantic’ is specified.)

e If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.

Chapter 3: GCC Command Options 43

e A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘~-Wno-sign-compare’ is also specified.)

e An aggregate has an initializer which does not initialize all members. For
example, the following code would cause such a warning, because x.h would
be implicitly initialized to zero:

struct s { int £, g, h; };
struct s x = { 3, 4 };

e A function parameter is declared without a type specifier in K&R-style
functions:
void foo(bar) { }

e An empty body occurs in an ‘if’ or ‘else’ statement.
e A pointer is compared against integer zero with ‘<’, ‘<=’ >’ or >=’.
e A variable might be changed by ‘longjmp’ or ‘vfork’.

e Any of several floating-point events that often indicate errors, such as over-
flow, underflow, loss of precision, etc.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) A non-static reference or non-static ‘const’ member appears in
a class without constructors.

e (C++ only) Ambiguous virtual bases.
(
(

3

C++ only) Subscripting an array which has been declared ‘register’.

C++ only) Taking the address of a variable which has been declared
register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~-Wunknown-pragmas’ must also be used.

-Wfloat-equal
Warn if floating point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the

44

Using the GNU Compiler Collection (GCC)

code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does
not in ISO C.

In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~-Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#" does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.
Initialization of automatic aggregates.

Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

Chapter 3: GCC Command Options 45

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wdeclaration-after-statement (C only)
Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 5.24 [Mixed Declarations], page 195.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;

46 Using the GNU Compiler Collection (GCC)

when compiling C++, warn about the deprecated conversion from string con-
stants to char *. These warnings will help you find at compile time code that
can try to write into a string constant, but only if you have been very careful
about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘~Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘~Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

Chapter 3: GCC Command Options 47

-Wmissing-format-attribute

If ‘~Wformat’ is enabled, also warn about functions which might be candidates
for format attributes. Note these are only possible candidates, not absolute
ones. GCC will guess that format attributes might be appropriate for any
function that calls a function like vprintf or vscanf, but this might not always
be the case, and some functions for which format attributes are appropriate
may not be detected. This option has no effect unless ‘~Wformat’ is enabled
(possibly by ‘-Wall’).

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wno-deprecated-declarations
Do not warn about uses of functions, variables, and types marked as deprecated
by using the deprecated attribute. (see Section 5.25 [Function Attributes],
page 195, see Section 5.32 [Variable Attributes|, page 210, see Section 5.33
[Type Attributes], page 215.)

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

-Wunreachable-code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.

48

-Winline

Using the GNU Compiler Collection (GCC)

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.

This option is not made part of ‘~Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.

Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the the amount of inlining that has already been done in
the current function. Therefore, seemingly insignificant changes in the source
program can cause the warnings produced by ‘-Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Winvalid-pch

Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 171) is found in the search path but can’t be used.

-Wlong-long

Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-~Wno-long-long’
are taken into account only when ‘-pedantic’ flag is used.

-Wdisabled-optimization

-Werror

Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

Make all warnings into errors.

Chapter 3: GCC Command Options 49

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

g

-ggdb

-gstabs

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-gstabs+’, ‘~gstabs’, ‘-gxcoff+’, ‘~gxcoff’, or ‘~gvms’
(see below).

Unlike most other C compilers, GCC allows you to use ‘-g’ with ‘-0°’. The
shortcuts taken by optimized code may occasionally produce surprising results:
some variables you declared may not exist at all; flow of control may briefly move
where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements
may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

-gstabs+

-gcoff

-gxcoff

-gxcoff+

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of

50 Using the GNU Compiler Collection (GCC)

these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

—gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

Note that in order to avoid confusion between DWARF1 debug level 2, and
DWARF?2 ‘-gdwarf-2’ does not accept a concatenated debug level. Instead use
an additional ‘-~glevel’ option to change the debug level for DWARF2.

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

Chapter 3: GCC Command Options 51

-fprofile-arcs

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘~fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-o dir/foo.0’).

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘-1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 56).

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

52

Using the GNU Compiler Collection (GCC)

-ftest-coverage

-dletters

Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program]|, page 323) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘~fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the compiler. The file names for most of the dumps
are made by appending a pass number and a word to the dumpname. dump-
name is generated from the name of the output file, if explicitly specified and
it is not an executable, otherwise it is the basename of the source file. In both
cases any suffix is removed (e.g. ‘foo.01.rtl’ or ‘fo0.02.sibling’). Here are
the possible letters for use in letters, and their meanings:

‘N Annotate the assembler output with miscellaneous debugging in-
formation.

‘v’ Dump after computing branch probabilities, to ‘file.12.bp’.

‘B’ Dump after block reordering, to ‘file.31.bbro’.

‘c’ Dump after instruction combination, to the file ‘file.20.combine’.

‘<’ Dump after the first if conversion, to the file ‘file.14.cel’. Also

dump after the second if conversion, to the file ‘file.21.ce2’.

‘&’ Dump after branch target load optimization, to to ‘file.32.btl’.
Also dump after delayed branch scheduling, to ‘file.36.dbr’.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

‘E’ Dump after the third if conversion, to ‘file.30.ce3’.

‘£ Dump after control and data flow analysis, to ‘file.11.cfg’. Also
dump after life analysis, to ‘file.19.1life’.

‘F’ Dump after purging ADDRESSOF codes, to ‘file.07.addressof’.

‘g’ Dump after global register allocation, to ‘file.25.greg’ .

‘G’ Dump after GCSE, to ‘file.08.gcse’. Also dump after jump by-
passing and control flow optimizations, to ‘file.10.bypass’.

‘n’ Dump after finalization of EH handling code, to ‘file.03.eh’.

‘i’ Dump after sibling call optimizations, to ‘file.02.sibling’.

‘3’ Dump after the first jump optimization, to ‘file.04. jump’.

‘%’ Dump after conversion from registers to stack, to ‘file.34.stack’.

‘v Dump after local register allocation, to ‘file.24.1lreg’ .

Chapter 3:

GCC Command Options 53

‘v Dump after loop optimization passes, to ‘file.09.loop’ and
‘file.16.1loop2’.

‘™ Dump after performing the machine dependent reorganization pass,
to ‘file.35.mach’.

‘n’ Dump after register renumbering, to ‘file.29.rnreg’.

‘N’ Dump after the register move pass, to ‘file.22.regmove’.

‘o’ Dump after post-reload optimizations, to ‘file.26.postreload’.

‘r’ Dump after RTL generation, to ‘file.01.rtl’.

‘R’ Dump after the second scheduling pass, to ‘file.33.sched?2’.

‘s’ Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.06.cse’.

‘s’ Dump after the first scheduling pass, to ‘file.23.sched’.

‘v’ Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.18.cse2’.

‘T Dump after running tracer, to ‘file.15.tracer’.

‘o’ Dump after null pointer elimination pass to ‘file.05.null’.

‘v Dump callgraph and unit-at-a-time optimization ‘file.00.unit’.

v Dump after the value profile transformations, to ‘file.13.vpt’.

‘W’ Dump after the second flow pass, to ‘file.27.flow2’.

‘z’ Dump after the peephole pass, to ‘file.28.peephole2’.

A Dump after constructing the web, to ‘file.17.web’ .

‘a’ Produce all the dumps listed above.

‘" Produce a core dump whenever an error occurs.

‘m’ Print statistics on memory usage, at the end of the run, to standard
error.

‘p’ Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

‘P’ Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘~dp’ annotation.

v’ For each of the other indicated dump files (except for
‘file.01.rtl’), dump a representation of the control flow graph
suitable for viewing with VCG to ‘file.pass.vcg'.

‘x’ Just generate RTL for a function instead of compiling it. Usually

used with ‘r’.

Dump debugging information during parsing, to standard error.

o4

Using the GNU Compiler Collection (GCC)

—-fdump-unnumbered

When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers and line number note output. This makes it more feasible to use
diff on debugging dumps for compiler invocations with different options, in

)

particular with and without ‘-g’.

-fdump-translation-unit (C and C++ only)
-fdump-translation-unit-options (C and C++ only)

Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘-options’ form is used, options controls the details of the dump as described
for the ‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-options’ form is used, options controls the details of the dump as
described for the ‘-fdump-tree’ options.

-fdump-tree-switch (C++ only)
-fdump-tree-switch-options (C++ only)

Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. If the ‘~options’ form is used, options is a list of
‘-’ separated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path.

‘all’ Turn on all options.

The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘inlined’ Dump after function inlining, to ‘file.inlined’.

-frandom-seed=string

This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. It is also used to place unique stamps in coverage data

Chapter 3: GCC Command Options 55

files and the object files that produce them. You can use the ‘~frandom-seed’
option to produce reproducibly identical object files.

The string should be different for every file you compile.

—-fsched-verbose=n

On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to standard
error, unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual
dump listing file, ‘.sched’ or ‘.sched2’ respectively. However for n greater
than nine, the output is always printed to standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘~dRS’. For n greater than one, it also output basic block probabilities, de-
tailed ready list information and unit/insn info. For n greater than two, it
includes RTL at abort point, control-flow and regions info. And for n over four,
‘~fsched-verbose’ also includes dependence info.

—-save-temps

-time

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time,” that is time spent executing
the program itself. The second number is “system time,” time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

-print-file-name=library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory

Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib

Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘=’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program

Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

56 Using the GNU Compiler Collection (GCC)

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do
gcc -nostdlib files... ‘gcc -print-libgcc-file-name®

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp0: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ’/’. See Section 3.19
[Environment Variables|, page 168.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0%)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 90.

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Using
the ‘~funit-at-a-time’ flag will allow the compiler to consider information gained from

Chapter 3: GCC Command Options 57

later functions in the file when compiling a function. Compiling multiple files at once to a
single output file (and using ‘-funit-at-a-time’) will allow the compiler to use information
gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.
With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.
‘=0’ turns on the following optimization flags:
-fdefer-pop
-fmerge-constants
-fthread-jumps
-floop-optimize
-fif-conversion
-fif-conversion2
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
‘-0’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.
-02 Optimize even more. GCC performs nearly all supported optimizations that

do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fforce-mem

-foptimize-sibling-calls
-fstrength-reduce

-fcse-follow-jumps -fcse-skip-blocks
-frerun-cse-after-loop -frerun-loop-opt
-fgcse -fgcse-1m -fgese-sm -fgcse-las
-fdelete-null-pointer-checks
-fexpensive-optimizations

-fregmove

-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fcaller-saves

-fpeephole2

-freorder-blocks -freorder-functions
-fstrict-aliasing

-funit-at-a-time

-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcrossjumping

Please note the warning under ‘~fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

58 Using the GNU Compiler Collection (GCC)

-03 Optimize yet more. ‘-03’ turns on all optimizations specified by ‘-02’ and
also turns on the ‘-finline-functions’, ‘~fweb’ and ‘-frename-registers’
options.

-00 Do not optimize. This is the default.

-0s Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘-0s’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops

-falign-labels -freorder-blocks -fprefetch-loop-arrays
If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-=02’, ‘-03’, ‘-0s’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as ‘-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also

Chapter 3: GCC Command Options 59

makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

—foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-limit=n

By default, GCC limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 600. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘-finline-limit=n’
option sets some of these parameters as follows:
max-inline-insns-single

is set to n/2.
max-inline-insns-auto

is set to n/2.
min-inline-insns

is set to 130 or n/4, whichever is smaller.

60

Using the GNU Compiler Collection (GCC)

max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way, it represents a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.
This switch does not affect extern inline functions.

-fkeep-static-consts

Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants

Attempt to merge identical constants (string constants and floating point con-
stants) across compilation units.

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’, ‘-02’, ‘~-03’, ‘-0s’.

-fmerge-all-constants

-fnew-ra

Attempt to merge identical constants and identical variables.

This option implies ‘~-fmerge-constants’. In addition to ‘~-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require
each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

Use a graph coloring register allocator. Currently this option is meant only
for testing. Users should not specify this option, since it is not yet ready for
production use.

-fno-branch-count-reg

Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, TA-
64 and S/390.

The default is ‘~fbranch-count-reg’, enabled when ‘-fstrength-reduce’ is

enabled.

Chapter 3: GCC Command Options 61

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘~fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.
-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

62 Using the GNU Compiler Collection (GCC)

-frerun-loop-opt
Run the loop optimizer twice.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse-1m
When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

-fgcse—-sm
When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Enabled by default when gcse is enabled.

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Enabled by default when gcse is enabled.

-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify
exit test conditions and optionally do strength-reduction and loop unrolling as
well.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

—-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.

Enabled at levels ‘-0°, ‘-02’, ‘-03’, ‘-0s’.

Chapter 3: GCC Command Options 63

—-fif-conversion2

Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

-fdelete-null-pointer-checks

Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.

In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘~fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-foptimize-register-move

-fregmove

Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.

Note ‘~fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

—-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

—-fschedule-insns?2

Similar to ‘~-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

64 Using the GNU Compiler Collection (GCC)

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘~fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘~fschedule-insns’ or at ‘-02’ or higher.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue of
stalled insns. Has an effect only during the second scheduling pass, and only if
‘~fsched-stalled-insns’ is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~-fschedule-insns2’ or at ‘-02’ or higher.

-fsched2-use-traces
Use ‘-fsched2-use-superblocks’ algorithm when scheduling after register al-
location and additionally perform code duplication in order to increase the size
of superblocks using tracer pass. See ‘~ftracer’ for details on trace formation.

This mode should produce faster but significantly longer programs. Also with-
out —-fbranch-probabilities the traces constructed may not match the reality
and hurt the performance. This only makes sense when scheduling after register
allocation, i.e. with ‘~fschedule-insns2’ or at ‘-02’ or higher.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around

Chapter 3: GCC Command Options 65

such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fmove-all-movables
Forces all invariant computations in loops to be moved outside the loop.

-freduce-all-givs
Forces all general-induction variables in loops to be strength-reduced.

Note: When compiling programs written in Fortran, ‘-fmove-all-movables’
and ‘~freduce-all-givs’ are enabled by default when you use the optimizer.

These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.

These two options are intended to be removed someday, once they have helped
determine the efficacy of various approaches to improving loop optimizations.

Please contact gcc@gcc.gnu.org, and describe how use of these options affects
the performance of your production code. Examples of code that runs slower
when these options are enabled are very valuable.

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘-fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’,
03, “-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using a randomized model.

Sometimes GCC will opt to use a randomized model to guess branch probabili-
ties, when none are available from either profiling feedback (‘-fprofile-arcs’)
or ‘__builtin_expect’. This means that different runs of the compiler on the
same program may produce different object code.

In a hard real-time system, people don’t want different runs of the compiler
to produce code that has different behavior; minimizing non-determinism is
of paramount import. This switch allows users to reduce non-determinism,
possibly at the expense of inferior optimization.

The default is ‘~fguess-branch-probability’ at levels ‘-0, ‘~-02’, ‘-03’, ‘-0s’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘~-02’, ‘~-03’.
—-freorder-functions

Reorder basic blocks in the compiled function in order to reduce number
of taken branches and improve code locality. This is implemented by using

66

Using the GNU Compiler Collection (GCC)

special subsections .text.hot for most frequently executed functions and
.text.unlikely for unlikely executed functions. Reordering is done by the
linker so object file format must support named sections and linker must place
them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based
on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.
Pay special attention to code like this:

union a_union {
int i;
double d;
};

int £O {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int £O {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;

}
Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C
front-end function c_get_alias_set.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24" would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

Chapter 3: GCC Command Options 67

‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘~-03’.

-falign-labels

-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘~fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that
labels will not be aligned.

If ‘-falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘~-02’, ‘-03’.

-falign-loops

-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

‘~fno-align-loops’ and ‘-falign-loops=1" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘~-02’, ‘~-03’.

-falign-jumps

-falign-jumps=n
Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.
‘-fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘-03’.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of reg-
isters left over after register allocation. This optimization will most benefit
processors with lots of registers. It can, however, make debugging impossible,
since variables will no longer stay in a “home register”.

68

-fweb

Using the GNU Compiler Collection (GCC)

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.

Enabled at levels ‘-03’.

-fno-cprop-registers

After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Disabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fprofile-generate

Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use -fprofile-generate both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

-fprofile-use

Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, -ftracer.

The following options control compiler behavior regarding floating point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

—-ffast-math

Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~fno-trapping-math’, ‘-ffinite-math-only’, ‘-fno-rounding-math’ and
‘~fno-signaling-nans’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

Chapter 3: GCC Command Options 69

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inex-
act result and invalid operation. This option implies ‘~fno-signaling-nans’.
Setting this option may allow faster code if one relies on “non-stop” IEEE
arithmetic, for example.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~-ftrapping-math’.

—-frounding-math

Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating point expressions at compile-time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

70

Using the GNU Compiler Collection (GCC)

The default is ‘-fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans

Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘~ftrapping-math’.

This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘~-fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant

Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

The following options control optimizations that may improve performance, but are not
enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

—-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gccl, page 49), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When the program com-
piled with ‘-fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘~fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

—fprofile-values

-fvpt

If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions
for their later usage in optimizations.

If combined with ‘-fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.

Chapter 3: GCC Command Options 71

With ‘~fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-fnew-ra Use a graph coloring register allocator. Currently this option is meant for

—-ftracer

testing, so we are interested to hear about miscompilations with ‘~fnew-ra’.

Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

—-funit-at-a-time

Parse the whole compilation unit before starting to produce code. This allows
some extra optimizations to take place but consumes more memory.

-funroll-loops

Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’.
It also turns on complete loop peeling (i.e. complete removal of loops with small
constant number of iterations). This option makes code larger, and may or may
not make it run faster.

-funroll-all-loops

Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops

Peels the loops for that there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

-funswitch-loops

Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-fold-unroll-loops

Unroll loops whose number of iterations can be determined at compile time
or upon entry to the loop, using the old loop unroller whose loop recognition
is based on notes from frontend. ‘-fold-unroll-loops’ implies both
‘~fstrength-reduce’ and ‘-frerun-cse-after-loop’. This option makes
code larger, and may or may not make it run faster.

-fold-unroll-all-loops

Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This is done using the old loop unroller whose loop
recognition is based on notes from frontend. This usually makes programs
run more slowly. ‘-fold-unroll-all-loops’ implies the same options as
‘~fold-unroll-loops’.

72 Using the GNU Compiler Collection (GCC)

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

—-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

Disabled at level ‘-0s’.

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

—--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

Chapter 3: GCC Command Options 73

max-crossjump-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N?) in the
number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable size.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gce. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 500.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different

74

Using the GNU Compiler Collection (GCC)

(more restrictive) limit compared to functions declared inline can
be applied. The default value is 100.

large-function-insns
The limit specifying really large functions. For functions
greater than this limit inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily
to avoid extreme compilation time caused by non-linear
algorithms used by the backend. This parameter is ignored when

‘~funit-at-a-time’ is not used. The default value is 3000.

large-function-growth
Specifies maximal growth of large function caused by inlining in
percents. This parameter is ignored when ‘~funit-at-a-time’ is
not used. The default value is 200.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. This parameter is ignored when ‘~funit-at-a-time’ is
not used. The default value is 150.

max-inline-insns-rtl
For languages that use the RTL inliner (this happens at a later
stage than tree inlining), you can set the maximum allowable size
(counted in RTL instructions) for the RTL inliner with this param-
eter. The default value is 600.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and
if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

Chapter 3: GCC Command Options 75

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block
in function given basic block needs to have to be considered hot

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers.

Using the GNU Compiler Collection (GCC)

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

ggc—min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the
notion of "RAM" is the smallest of actual RAM, RLIMIT_RSS,
RLIMIT_DATA and RLIMIT_AS. If GCC is not able to calculate
RAM on a particular platform, the lower bound of 30% is used.
Setting this parameter and ‘ggc-min-heapsize’ to zero causes a
full collection to occur at every opportunity. This is extremely
slow, but can be useful for debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is RAM/8, with a lower bound of 4096 (four megabytes)
and an upper bound of 131072 (128 megabytes). If getrlimit is
available, the notion of "RAM" is the smallest of actual RAM,
RLIMIT_RSS, RLIMIT_DATA and RLIMIT_AS. If GCC is not
able to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compile time increase with probably slightly
better performance. The default value is 100.

max-cselib-memory-location
The maximum number of memory locations cselib should take into
acount. Increasing values mean more aggressive optimization, mak-
ing the compile time increase with probably slightly better perfor-
mance. The default value is 500.

Chapter 3: GCC Command Options 7

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

You can use ‘-Wp, option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

-D name=definition
Predefine name as a macro, with definition definition. The contents of definition
are tokenized and processed as if they appeared during translation phase three
in a ‘#define’ directive. In particular, the definition will be truncated by
embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name (args...)=definition’’ works.

78

-U name

—undef

-1 dir

-o file

-Wall

-Wcomment
-Wcomments

Using the GNU Compiler Collection (GCC)

‘-D” and ‘-U’ options are processed in the order they are given on the command
line. All ‘-~imacros file’ and ‘-include file’ options are processed after all
‘-D’ and ‘-U’ options.

Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated .

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-o’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional

-Wimport

-Wundef

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

Warn the first time ‘#import’ is used.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

Chapter 3: GCC Command Options 79

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form
#if FOO

#éise FOO0

#endif FOD
The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers

W

-pedantic

-pedantic-

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘-imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.

80

-MM

-MF file

-MG

-MP

-MT target

Using the GNU Compiler Collection (GCC)

If there are many included files then the rule is split into several lines using
‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 168). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit

.

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file
suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

Chapter 3: GCC Command Options 81

-MQ target

-MD

-MMD

-fpch-deps

“XC
-X c++

For example, ‘-MT ’*$(objpfx)foo.o’’ might give
$(objpfx)foo.0: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ *$(objpfx)foo.0’’ gives

$$(objpfx)foo.0: foo.c
The default target is automatically quoted, as if it were given with ‘-MQ’.

‘~MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘~E’, any ‘-o’ switch is understood to specify
the dependency output file (but see [-MF], page 80), but if used without ‘-E’,
each ‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system -header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 171), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, ‘.m’, or ‘.S’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

3

Note: Previous versions of cpp accepted a ‘-lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-1’ option.

-std=standard

-ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:
1509899:1990

c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand
for this version of the standard.

82 Using the GNU Compiler Collection (GCC)

The ‘-ansi’ option is equivalent to ‘~std=c89’.

is09899:199409
The 1990 C standard, as amended in 1994.

is09899:1999

c99

1s09899:199x

c9x The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnuox The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnut++98 The same as ‘~std=c++98’ plus GNU extensions. This is the default
for C++ code.

-I- Split the include path. Any directories specified with ‘-I’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file directory
as the first search directory for #include "file".

-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I” options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

Chapter 3: GCC Command Options 83

All files specified by ‘-imacros’ are processed before all files specified by
‘~include’.

-idirafter dir
Search dir for header files, but do it after all directories specified with ‘-I" and
the standard system directories have been exhausted. dir is treated as a system
include directory.

-iprefix prefix
Specify prefix as the prefix for subsequent ‘~iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-~iwithprefixbefore’ puts it
in the same place ‘-1’ would; ‘-iwithprefix’ puts it where ‘-idirafter’ would.

-isystem dir
Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories.

—-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,
“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files

created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~ftarget-charset’, charset can be any encoding sup-
ported by the system’s iconv library routine; however, you will have problems
with encodings that do not fit exactly in wchar_t.

84

Using the GNU Compiler Collection (GCC)

-finput-charset=charset

Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

—-dCHARS

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘™ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output
file.

Chapter 3: GCC Command Options 85

-CC

‘N’ Like ‘D’, but emit only the macro names, not their expansions.
‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp

-trigraphs

-remap

--help

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

Process trigraph sequences. These are three-character sequences, all starting
with ‘7?7’ that are defined by ISO C to stand for single characters. For example,
“?7/’ stands for ‘\’, so ‘> ??/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.
The nine trigraphs and their replacements are

Trigraph: ??7(??) ??< 77> ??= 7?7/ 7?7’ 7?70 77—

Replacement: [] { } # \ - | -

Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

-—target-help

Print text describing all the command line options instead of preprocessing
anything.

Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

86 Using the GNU Compiler Collection (GCC)

-H Print the name of each header file used, in addition to other normal activities.
Fach name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘. ..x’ and a valid one with *...!" .

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘-Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file—-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options], page 18.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

Chapter 3: GCC Command Options 87

-lobjc

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1ib’ and ‘.a’ and searches several
directories.

¢

You need this special case of the ‘-1’ option in order to link an Objective-C

program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs

-nostdlib

-pie

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, and memcpy for System V (and ISO C) environments or to bcopy and
bzero for BSD environments. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, and memcpy for System V
(and ISO C) environments or to becopy and bzero for BSD environments. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘~1gcc’ as
well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

Produce a position independent executable on targets which support it. For
predictable results, you must also specify the same set of options that were

88

-static

—-shared

Using the GNU Compiler Collection (GCC)

used to generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify
this option.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.!

-shared-1libgcc
-static-libgcc

—-symbolic

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘1ibgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘libgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘--eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of
the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘1ibgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 89

-Xlinker option

-W1l,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘~Xlinker -assert -Xlinker
definitions’. It does not work to write ‘~Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what

the linker expects.

Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘~isystem’ options.

Any directories you specify with ‘I’ options before the ‘-I-’ option are searched
only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

In addition, the ‘~I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-". With ‘-I.’ you
can specify searching the directory which was current when the compiler was

90

-Ldir

-Bprefix

Using the GNU Compiler Collection (GCC)

invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

Add directory dir to the list of directories to be searched for ‘-1’.

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options]|, page 97).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If
neither of those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your PATH environment
variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘~isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 168.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order
to override the defaults that the ‘gcc’ driver program uses when determin-
ing what switches to pass to ‘ccl’, ‘cclplus’, ‘as’, ‘1d’, etc. More than one
‘-specs=file’ can be specified on the command line, and they are processed
in order, from left to right.

Chapter 3: GCC Command Options 91

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following:

%command Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

Y%rename old_name new_name
Rename the spec string old_name to new_name.

* [spec_name] :

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘+’ character, in which case the text
will be appended to the spec.

[suffix]:

Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

ZZ:

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

92 Using the GNU Compiler Collection (GCC)

Q@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:
\ZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

ccl Options to pass to the C compiler

cclplus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

1ib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether char is signed
by default
startfile Object files to include at the start of the link
Here is a small example of a spec file:

Jirename 1lib old_lib

*1ib:
--start-group -lgcc -lc -levall --end-group %(old_lib)

This example renames the spec called ‘1ib’ to ‘o1d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘},’-prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

hoth Substitute one ‘%’ into the program name or argument.

hi Substitute the name of the input file being processed.

Chapter 3:

b

B
hd

hgsuffix

Y%usuffix

%Usuffix

%jsuffix

%|suffix
Ymsuffix

%.SUFFIX

Yw

%o

GCC Command Options 93

Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

This is the same as ‘)%b’, but include the file suffix (text after the last period).

Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
hg.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’ . suffix
matches the regexp ‘[.A-Za-z]#*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name even if ‘fusuffix’ was
already seen.

Substitutes the last file name generated with ‘fusuffix’, generating a new one
if there is no such last file name. In the absence of any ‘fjusuffix’, this is
just like ‘Y%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... %.s ... %g.s ... %U.s” would involve the generation of two distinct file
names, one for each ‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’ was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
“%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘Y0’ as well or the results are

94 Using the GNU Compiler Collection (GCC)
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

%0 Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%0’ as they would following, for
example, ‘.o’ .

hp Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

yAY Like ‘%p’, but puts ‘__" before and after the name of each predefined macro,
except for macros that start with ‘__’" or with ‘_L’, where L is an uppercase
letter. This is for ISO C.

hI Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), and ‘-isystem’ (made from
COMPILER_PATH and ‘-B’ options) as necessary.

hs Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.

hestr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%(name) Substitute the contents of spec string name at this point.

% [name] Like ‘% (...)" but put ‘__" around ‘-D’ arguments.

%x{option}

Accumulate an option for ‘%X’.

WX Output the accumulated linker options specified by ‘-W1’ or a ‘%x’ spec string.

WY Output the accumulated assembler options specified by ‘-Wa’.

hZ Output the accumulated preprocessor options specified by ‘~Wp’.

%ha Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an
assembler post-processor, if such a program is needed.

yAl Process the 1ink spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

M Output the multilib directory with directory separators replaced with ‘_’. If

multilib directories are not set, or the multilib directory is ‘.’ then this option
emits nothing.

Chapter 3: GCC Command Options 95

%L

hG

hS

%E

%C

he

hl

h2

YA

%<S

Process the 1ib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

Process the startfile spec. This is a spec for deciding which object files
should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.0’.

Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

Process the cpp spec. This is used to construct the arguments to be passed to

the C preprocessor.

Process the signed_char spec. This is intended to be used to tell cpp whether

a char is signed. It typically has the definition:
%{funsigned-char:-D__CHAR_UNSIGNED__}

Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

Process the cclplus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cciplus’).

Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

Remove all occurrences of =S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one will see -8,
‘% commands in the spec string after this one will not.

%:function (args)

Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.

The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:

xstartfile:
crt0%0%s %:if-exists(crti’%0%s) crtbegin}0is

if-exists-else

The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:

96

%{s}

hw{s}

h{s*}

%{S*&T*}

%{S: X}
%{1S:X}
%{S*:X}

%{.S:X}
%{!.s:X}
%{S|P:X}

Using the GNU Compiler Collection (GCC)

*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginT%0%s crtbegin0%s)

Substitutes the -S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ would match the command-line
option ‘-foo’ and would output the command line option ‘-foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘=TI’
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{0*} would substitute this text, including the space. Thus two arguments
would be generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘% {D*&Ux&Ax*}’.

Substitutes X, if the ‘-S’ switch was given to GCC.
Substitutes X, if the ‘=8’ switch was not given to GCC.

Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted
once for each matching switch, with the %* replaced by the part of that switch
that matched the *.

Substitutes X, if processing a file with suffix S.
Substitutes X, if not processing a file with suffix S.
Substitutes X if either -S or -P was given to GCC. This may be combined with

‘170 ¢ and * sequences as well, although they have a stronger binding than
the ‘1’. If %* appears in X, all of the alternatives must be starred, and only the

first matching alternative is substituted.
For example, a spec string like this:
%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}
will output the following command-line options from the following input
command-line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}

If S was given to GCC, substitutes X; else if T was given to GCC, substitutes
Y; else substitutes D. There can be as many clauses as you need. This may be
combined with ., !, |, and * as needed.

Chapter 3: GCC Command Options 97

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-0°, ‘-f’, ‘-m’, and ‘-W switches are handled specifically in these constructs. If
another value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-1’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that
was installed last. Sometimes this is inconvenient, so GCC provides options that will switch
to another cross-compiler or version.

-b machine
The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type
when configuring GCC as a cross-compiler. For example, if a cross-compiler was
configured with ‘configure i386v’, meaning to compile for an 80386 running
System V, then you would specify ‘-b 1386v’ to run that cross compiler.

-V version
The argument version specifies which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be ‘2.0,
meaning to run GCC version 2.0.

The ‘-V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable,
so there’s no real reason to use them if you can just run that directly.

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed com-
pilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

98 Using the GNU Compiler Collection (GCC)

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description.

The default for the options is also defined by that macro, which enables you to change the
defaults.

3.17.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the defaults
for the most common choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unless ‘—-nfp’ was specified when the compiler
was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-mcpu3d2 Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X “coldfire” family cpu. This is the default when the
compiler is configured for 520X-based systems.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

Chapter 3: GCC Command Options 99

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all m68k targets. Normally the facilities
of the machine’s usual C compiler are used, but this can’t be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘m68k-*-aout’
and ‘m68k-*-coff’ do provide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’
options imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int

-mno-align-int
Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code

100 Using the GNU Compiler Collection (GCC)

that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.

Warning: if you use the ‘-malign-int’ switch, GCC will align structures con-
taining the above types differently than most published application binary in-
terface specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘~fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘~fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align

-mstrict-align
Do not (do) assume that unaligned memory references will be handled by the
system.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management. This option implies -fPIC.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies -fPIC.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

3.17.2 M68hclx Options

These are the ‘-m’ options defined for the 68hcll and 68hcl2 microcontrollers. The default
values for these options depends on which style of microcontroller was selected when the
compiler was configured; the defaults for the most common choices are given below.

-m6811
-m68hcil Generate output for a 68HC11. This is the default when the compiler is con-
figured for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is con-
figured for 68HC12-based systems.

Chapter 3: GCC Command Options 101

-m68S12
-m68hcs12
Generate output for a 68HCS12.

-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

-minmax
-nominmax
Enable the use of 68HC12 min and max instructions.

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will use the call instruction to call a function and the rtc instruction
for returning.

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code gener-
ation. The maximum number is 32. Using more pseudo-soft register may or
may not result in better code depending on the program. The default is 4 for
68HC11 and 2 for 68HC12.

3.17.3 VAX Options
These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.17.4 SPARC Options
These ‘-m’ options are supported on the SPARC:

-mno-app-regs
-mapp-regs
Specify ‘-mapp-regs’ to generate output using the global registers 2 through
4, which the SPARC SVR4 ABI reserves for applications. This is the default,
except on Solaris.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mfpu
-mhard-float
Generate output containing floating point instructions. This is the default.

102

-mno-fpu

Using the GNU Compiler Collection (GCC)

-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*" do provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float

Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float

-mno-flat
-mflat

Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.

As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

With ‘-mflat’, the compiler does not generate save/restore instructions and
will use a “flat” or single register window calling convention. This model uses
%i7 as the frame pointer and is compatible with the normal register window
model. Code from either may be intermixed. The local registers and the input
registers (0-5) are still treated as “call saved” registers and will be saved on the
stack as necessary.

With ‘-mno-flat’ (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

These options are deprecated and will be deleted in a future GCC release.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.

With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating point code.

Chapter 3: GCC Command Options 103

-mno-faster-structs

-mfaster-structs
With ‘-mfaster-structs’, the compiler assumes that structures should have
8 byte alignment. This enables the use of pairs of 1dd and std instructions
for copies in structure assignment, in place of twice as many 1d and st pairs.
However, the use of this changed alignment directly violates the SPARC ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code will not be directly in line with the rules of the ABI.

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘-z text’ to the linker when linking a shared object. Using this option, you can
link position-dependent code into a shared object.

‘-mimpure-text’ suppresses the “relocations remain against allocatable but
non-writable sections” linker error message. However, the necessary reloca-
tions will trigger copy-on-write, and the shared object is not actually shared
across processes. Instead of using ‘-mimpure-text’, you should compile all
source code with ‘-fpic’ or ‘-fPIC’.

This option is only available on SunOS and Solaris.

-mv8

-msparclite
These two options select variations on the SPARC architecture. These options
are deprecated and will be deleted in a future GCC release. They have been
replaced with ‘-mcpu=xxx’.

-mcypress

-msupersparc

-m£930

-mf934 These four options select the processor for which the code is optimized. These

options are deprecated and will be deleted in a future GCC release. They have
been replaced with ‘-mcpu=xxx’.

-mcpu=cpu_type

Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu_type. Supported values for cpu_type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘f930’, ‘f934’, ‘hypersparc’, ‘sparclite86x’,
‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, and ‘ultrasparc3’.

Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9’.

Here is a list of each supported architecture and their supported implementa-

tions.
v7: cypress
v8: supersparc, hypersparc
sparclite: £930, £934, sparclite86x
sparclet: tsc701

v9: ultrasparc, ultrasparc3

104

Using the GNU Compiler Collection (GCC)

By default (unless configured otherwise), GCC generates code for the V7 vari-
ant of the SPARC architecture. With ‘-mcpu=cypress’, the compiler addition-
ally optimizes it for the Cypress CY7C602 chip, as used in the SPARCSta-
tion/SPARCServer 3xx series. This is also appropriate for the older SPARC-
Station 1, 2, IPX etc.

With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC archi-
tecture. The only difference from V7 code is that the compiler emits the integer
multiply and integer divide instructions which exist in SPARC-V8 but not in
SPARC-V7. With ‘-mcpu=supersparc’, the compiler additionally optimizes it
for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000

series.

With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=£930’°, the compiler additionally optimizes it for the Fujitsu MB86930
chip, which is the original SPARClite, with no FPU. With ‘-mcpu=£934’, the
compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the
more recent SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (ffs) instructions which exist in SPARClet but
not in SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes
it for the TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC archi-
tecture. This adds 64-bit integer and floating-point move instructions, 3 addi-
tional floating-point condition code registers and conditional move instructions.
With ‘-mcpu=ultrasparc’, the compiler additionally optimizes it for the Sun
UltraSPARC 1/1I chips. With ‘-mcpu=ultrasparc3d’, the compiler additionally
optimizes it for the Sun UltraSPARC III chip.

-mtune=cpu_type

-mv8plus

Set the instruction scheduling parameters for machine type cpu_type, but do
not set the instruction set or register set that the option ‘-mcpu=cpu_type’
would.

The same values for ‘-mcpu=cpu_type’ can be used for ‘-mtune=cpu_type’,

but the only useful values are those that select a particular cpu implemen-
tation. Those are ‘cypress’, ‘supersparc’, ‘hypersparc’, ‘f930°, ‘f934’,
‘sparclite86x’, ‘tsc701’, ‘ultrasparc’, and ‘ultrasparc3’.

-mno-v8plus

With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64-bit
wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9
processors.

Chapter 3: GCC Command Options 105

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is ‘-mno-vis’.

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in
64-bit environments:

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available
for a few configurations and most notably not on Solaris and Linux.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mcmodel=medlow
Generate code for the Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically or
dynamically linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: 64-bit addresses, pro-
grams may be linked anywhere in memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in size, both
starting anywhere in memory (determined at link time). The global register
%g4 points to the base of the data segment. Programs are statically linked and
PIC is not supported.

-mstack-bias

-mno-stack-bias
With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by —2047 which must be added back when making stack
frame references. This is the default in 64-bit mode. Otherwise, assume no
such offset is present.

These switches are supported in addition to the above on Solaris:

-threads Add support for multithreading using the Solaris threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

106 Using the GNU Compiler Collection (GCC)

-pthreads
Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

3.17.5 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mapcs—-frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘~fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mapcs-26
Generate code for a processor running with a 26-bit program counter, and
conforming to the function calling standards for the APCS 26-bit option.

This option is deprecated. Future releases of the GCC will only support gener-
ating code that runs in apcs-32 mode.

-mapcs-32
Generate code for a processor running with a 32-bit program counter, and
conforming to the function calling standards for the APCS 32-bit option.

This flag is deprecated. Future releases of GCC will make this flag uncondi-
tional.

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code
is generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that
all functions will start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in

Chapter 3: GCC Command Options 107

cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords—-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

-malignment-traps

Generate code that will not trap if the MMU has alignment traps enabled. On
ARM architectures prior to ARMv4, there were no instructions to access half-
word objects stored in memory. However, when reading from memory a feature
of the ARM architecture allows a word load to be used, even if the address
is unaligned, and the processor core will rotate the data as it is being loaded.
This option tells the compiler that such misaligned accesses will cause a MMU
trap and that it should instead synthesize the access as a series of byte accesses.
The compiler can still use word accesses to load half-word data if it knows that
the address is aligned to a word boundary.

This option has no effect when compiling for ARM architecture 4 or later,
since these processors have instructions to directly access half-word objects in
memory.

-mno-alignment-traps
Generate code that assumes that the MMU will not trap unaligned accesses.
This produces better code when the target instruction set does not have half-
word memory operations (i.e. implementations prior to ARMv4).

Note that you cannot use this option to access unaligned word objects, since
the processor will only fetch one 32-bit aligned object from memory.

The default setting is ‘-malignment-traps’, since this produces code that will
also run on processors implementing ARM architecture version 6 or later.

This option is deprecated and will be removed in the next release of GCC.
-mcpu=name

This specifies the name of the target ARM processor. GCC uses this name to

determine what kind of instructions it can emit when generating assembly

108 Using the GNU Compiler Collection (GCC)

code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’,
‘arm600’, ‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’,
‘arm7dmi’, ‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm8’, ‘strongarm’, ‘strongarm110’,
‘strongarm1100’, ‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’,
‘arm926ejs’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’, ‘arm1026ejs’,
‘arm1136js’, ‘arm1136jfs’ ,‘xscale’, ‘iwmmxt’, ‘ep9312’.
-mtune=name

This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code as
if the target were of the type specified in this option, but still choosing the in-
structions that it will generate based on the cpu specified by a ‘-mcpu=’ option.
For some ARM implementations better performance can be obtained by using
this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armvb’, ‘armvbt’, ‘armvbte’; ‘armv6j’, ‘iwmmxt’, ‘ep9312’.

-mfpe=number

-mfp=number
This specifies the version of the floating point emulation available on the tar-
get. Permissible values are 2 and 3. ‘-mfp=’ is a synonym for ‘-mfpe=’; for
compatibility with older versions of GCC.

4

-mstructure-size-boundary=n

The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8 and 32. The default
value varies for different toolchains. For the COFF targeted toolchain the de-
fault value is 8. Specifying the larger number can produce faster, more efficient
code, but can also increase the size of the program. The two values are poten-
tially incompatible. Code compiled with one value cannot necessarily expect
to work with code or libraries compiled with the other value, if they exchange
information using structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Chapter 3: GCC Command Options 109

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior, as will placing the function calls within the scope of
a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the d1limport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The run-time system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns

Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for
the Cirrus Maverick floating point co-processor. This option is not enabled by
default, since the problem is only present in older Maverick implementations.
The default can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’
switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - tO)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0x£f£000000).

110 Using the GNU Compiler Collection (GCC)

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the
32-bit ARM instruction set.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs—-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruc-
tion set header which switches to Thumb mode before executing the rest of the
function. This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer if
this option is enabled.

3.17.6 MIN10300 Options
These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This
is the default.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.

This option makes symbolic debugging impossible.

3.17.7 M32R /D Options
These ‘-m’ options are defined for Renesas M32R /D architectures:

-m32r2 Generate code for the M32R /2.

Chapter 3: GCC Command Options 111

-m32rx Generate code for the M32R/X.
-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/j1 instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

-mdebug Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

112 Using the GNU Compiler Collection (GCC)

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches will be preferred over
conditional code, if it is 2, then the opposite will apply.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is _flush_cache, but a function call will only be used if a trap is not
available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.

3.17.8 IBM RS/6000 and PowerPC Options
These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower

-mno-power

-mpower?2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gfxopt

-mno-powerpc-gfxopt

-mpowerpc64

-mno-powerpc64
GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Motorola MPCbxx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx microprocessors.

Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these
options. We recommend you use the ‘-mcpu=cpu_type’ option rather than the
options listed above.

Chapter 3: GCC Command Options 113

The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower?2’
implies ‘-power’ and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc’ option allows GCC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies
‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.

The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GCC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

-mnew-mnemonics

-mold-mnemonics
Select which mnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the
PowerPC architecture. =~ With ‘-mold-mnemonics’ it uses the assembler
mnemonics defined for the POWER architecture. Instructions defined in
only one architecture have only one mnemonic; GCC uses that mnemonic
irrespective of which of these options is specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying ‘-mcpu=cpu_type’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu_type

Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu_type. Supported values for
cpu_type are ‘401’, ‘403’, ‘405, ‘405fp’, ‘440’, ‘440fp’, ‘505’, ‘601’, ‘602’,
‘603, ‘603e’, ‘604’, ‘604e’, ‘620°, ‘6307, ‘740’, ‘74007, ‘7450, ‘7507, ‘801", ‘821",
‘823’, ‘860, ‘9707, ‘8540, ‘common’, ‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘power’, ‘power2’,
‘power3’, ‘powerd’, ‘powerd’; ‘powerpc’, ‘powerpc64’, ‘rios’, ‘riosl’, ‘rios?2’,
‘rsc’, and ‘rs64a’.

‘-mcpu=common’ selects a completely generic processor. Code generated under
this option will run on any POWER or PowerPC processor. GCC will use
only the instructions in the common subset of both architectures, and will not

114 Using the GNU Compiler Collection (GCC)

use the MQ register. GCC assumes a generic processor model for scheduling
purposes.

3

‘-mcpu=power’, ‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’
specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601),
and 64-bit PowerPC architecture machine types, with an appropriate, generic
processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those
options will run best on that processor, and may not run at all on others.

The ‘-mcpu’ options automatically enable or disable the following options:
‘-maltivec’, ‘-mhard-float’, ‘-mmfcrf’, ‘-mmultiple’, ‘-mnew-mnemonics’,
‘-mpower’, ‘-mpower2’, ‘-mpowerpc64’, ‘-mpowerpc-gpopt’, ‘-mpowerpc-gfxopt’]
‘-mstring’. The particular options set for any particular CPU will vary
between compiler versions, depending on what setting seems to produce
optimal code for that CPU; it doesn’t necessarily reflect the actual hardware’s
capabilities. If you wish to set an individual option to a particular value, you
may specify it after the ‘-mcpu’ option, like ‘-mcpu=970 -mno-altivec’.

On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present, since AIX does not have full support for these
options. You may still enable or disable them individually if you're sure it’ll
work in your environment.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but
do not set the architecture type, register usage, or choice of mmnemonics,
as ‘-mcpu=cpu_type’ would. The same values for cpu_type are used for
‘-mtune’ as for ‘-mcpu’. If both are specified, the code generated will use
the architecture, registers, and mnemonics set by ‘-mcpu’, but the scheduling
parameters set by ‘-mtune’.

-maltivec

-mno-altivec
These switches enable or disable the use of built-in functions that allow access
to the AltiVec instruction set. You may also need to set ‘-mabi=altivec’ to
adjust the current ABI with AltiVec ABI enhancements.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-misel=yes/no
-misel This switch enables or disables the generation of ISEL instructions.

-mspe=yes/no
-mspe This switch enables or disables the generation of SPE simd instructions.

Chapter 3: GCC Command Options 115

-mfloat-gprs=yes/no

-mfloat-gprs
This switch enables or disables the generation of floating point operations on
the general purpose registers for architectures that support it. This option is
currently only available on the MPC8540.

-mfull-toc

-mno-fp-in-toc

-mno-sum-in-toc

-mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place floating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant
at run-time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

-maix64

-maix32 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long
type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit
ABI and implies ‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mx1l-compat

-mno-xl-compat
Produce code that conforms more closely to IBM XLC semantics when using
AIX-compatible ABI. Pass floating-point arguments to prototyped functions
beyond the register save area (RSA) on the stack in addition to argument
FPRs. Do not assume that most significant double in 128 bit long double value
is properly rounded when comparing values.

The AIX calling convention was extended but not initially documented to han-
dle an obscure K&R C case of calling a function that takes the address of
its arguments with fewer arguments than declared. AIX XL compilers access
floating point arguments which do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-

116 Using the GNU Compiler Collection (GCC)

point arguments on the stack is inefficient and rarely needed, this option is not
enabled by default and only is necessary when calling subroutines compiled by
AIX XL compilers without optimization.

-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-specs=’ option to specify the appropriate directory location. The Parallel
Environment does not support threads, so the ‘-mpe’ option and the ‘-pthread’
option are incompatible.

-malign-natural

-malign-power
On AIX, Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules.
GCC defaults to the standard alignment defined in the ABI.

-msoft-float

-mhard-float
Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-mmultiple

-mno-multiple
Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode. The exceptions are
PPC740 and PPC750 which permit the instructions usage in little endian mode.

-mstring

-mno-string
Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750 which permit
the instructions usage in little endian mode.

-mupdate

-mno-update
Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small

Chapter 3: GCC Command Options 117

window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating is used.

-mno-bit-align

-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.

For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 would be aligned to a 4 byte boundary and have a size of 4
bytes. By using ‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align

-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable
On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. If you use
‘-mrelocatable’ on any module, all objects linked together must be compiled
with ‘-mrelocatable’ or ‘-mrelocatable-1ib’.

-mrelocatable-1ib

-mno-relocatable-1ib
On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-1ib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-1ib’ or with modules compiled with the
‘-mrelocatable’ options.

—-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-
ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle

-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

118 Using the GNU Compiler Collection (GCC)

-mbig
-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’ .
-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable
for applications, but not shared libraries.

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted
instructions during the second scheduling pass. The argument priority takes
the value 0/1/2 to assign no/highest/second-highest priority to dispatch slot
restricted instructions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence_type takes one of the
following values: no: no dependence is costly, all: all dependences are costly,
true_store_to_load: a true dependence from store to load is costly, store_to_load:
any dependence from store to load is costly, number: any dependence which
latency >= number is costly.

-minsert-sched-nops=scheme

This option controls which nop insertion scheme will be used during the second
scheduling pass. The argument scheme takes one of the following values: no:
Don’t insert nops. pad: Pad with nops any dispatch group which has vacant
issue slots, according to the scheduler’s grouping. regroup_exact: Insert nops
to force costly dependent insns into separate groups. Insert exactly as many
nops as needed to force an insn to a new group, according to the estimated
processor grouping. number: Insert nops to force costly dependent insns into
separate groups. Insert number nops to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

Chapter 3: GCC Command Options 119

-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-
based GNU system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvrd-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4
ABI).

-mabi=altivec
Extend the current ABI with AltiVec ABI extensions. This does not change
the default ABI, instead it adds the AltiVec ABI extensions to the current ABI.

-mabi=no-altivec
Disable AltiVec ABI extensions for the current ABI.

-mprototype

-mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether floating point values
were passed in the floating point registers in case the function takes a variable
arguments. With ‘-mprototype’, only calls to prototyped variable argument
functions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.0’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

-mvVXwWorks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-mwindiss
Specify that you are compiling for the WindISS simulation environment.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

120 Using the GNU Compiler Collection (GCC)

-meabi

-mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8 byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the ‘-msdata’ option can use both r2 and r13
to point to two separate small data areas. Selecting ‘-mno-eabi’ means that
the stack is aligned to a 16 byte boundary, do not call an initialization function
from main, and the ‘-msdata’ option will only use r13 to point to a single small
data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi

On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

-msdata=default

-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-
pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section. Put small uninitialized global and static data in
the ‘.sbss’ section. Do not use register r13 to address small data however.
This is the default behavior unless other ‘-msdata’ options are used.

-msdata=none

-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The ‘-G num’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num’ value.

Chapter 3: GCC Command Options 121

-mregnames
-mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

-mlongcall

-mno-longcall
Default to making all function calls via pointers, so that functions which reside
further than 64 megabytes (67,108,864 bytes) from the current location can be
called. This setting can be overridden by the shortcall function attribute, or
by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue
code on the fly. On these systems, long calls are unnecessary and generate
slower code. As of this writing, the AIX linker can do this, as can the GNU
linker for PowerPC/64. It is planned to add this feature to the GNU linker for
32-bit PowerPC systems as well.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue
for every direct call, and the Darwin linker decides whether to use or discard
it.

In the future, we may cause GCC to ignore all longcall specifications when the
linker is known to generate glue.

-pthread Adds support for multithreading with the pthreads library. This option sets
flags for both the preprocessor and linker.

3.17.9 Darwin Options

These options are defined for all architectures running the Darwin operating system. They
are useful for compatibility with other Mac OS compilers.

-all_load
Loads all members of static archive libraries. See man 1d(1) for more informa-
tion.

—arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This specifies the executable that will be loading the build output file being
linked. See man 1d(1) for more information.

122 Using the GNU Compiler Collection (GCC)

-allowable_client client_name
—arch_only

-client_name
—-compatibility_version
-current_version
—dependency-file
-dylib_file
—dylinker_install_name
—dynamic

—dynamiclib
-exported_symbols_list
-filelist
-flat_namespace
-force_cpusubtype_ALL
-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

—-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-nofixprebinding
-nomultidefs

-noprebind
-noseglinkedit
-pagezero_size

-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

-sectcreate
-sectobjectsymbols
-sectorder
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module

-static

-sub_library
-sub_umbrella
-twolevel_namespace
-umbrella

-undefined
—unexported_symbols_list
-weak_reference_mismatches
-whatsloaded

MmMhaca At r1arma ara atratlalhla £4v Navvaran 13-+ Dararain 13-4 a1 acrn Aacmrrth Ac

Chapter 3: GCC Command Options 123

3.17.10 MIPS Options

-EB
-EL

Generate big-endian code.

Generate little-endian code. This is the default for ‘mips*el-*-%’ configura-
tions.

-march=arch

Generate code that will run on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mipsl’,
‘mips2’, ‘mips3’, ‘mips4’, ‘mips32’, ‘mips32r2’, and ‘mips64’. The processor
names are: ‘dkc’; ‘dkp’; ‘bkc’; ‘20kc’, ‘mék’, ‘r2000’, ‘r3000’, ‘r3900’, ‘r4000’,
‘v4400°, ‘T4600°, ‘T4650’, ‘T6000’, ‘r8000’, ‘rm7000°, ‘rm9000’, ‘orion’, ‘sbl’,
‘vrd100’, ‘vra111’, ‘vr4120’, ‘vr4300’, ‘vr5000’, ‘vr5400’ and ‘vr5500°. The
special value ‘from-abi’ selects the most compatible architecture for the se-
lected ABI (that is, ‘mips1’ for 32-bit ABIs and ‘mips3’ for 64-bit ABIs).

In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.

GCC defines two macros based on the value of this option. The first is
‘_MIPS_ARCH’, which gives the name of target architecture, as a string. The
second has the form ‘_MIPS_ARCH_foo’, where foo is the capitalized value
of ‘_MIPS_ARCH. For example, ‘-march=r2000’ will set ‘_MIPS_ARCH to
‘"r2000"” and define the macro ‘_MIPS_ARCH_R2000’.

Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In
other words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’.
In the case of ‘from-abi’, the macro names the resolved architecture (either
“"mips1"’ or ‘"mips3"’). It names the default architecture when no ‘-march’
option is given.

-mtune=arch

-mipsl
-mips2
-mips3
-mips4
-mips32
-mips32r2

Optimize for arch. Among other things, this option controls the way instruc-
tions are scheduled, and the perceived cost of arithmetic operations. The list
of arch values is the same as for ‘-march’.

When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate
code that will run on a family of processors, but optimize the code for one
particular member of that family.

‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo’, which work
in the same way as the ‘-march’ ones described above.

Equivalent to ‘-march=mips1’.
Equivalent to ‘-march=mips2’.
Equivalent to ‘-march=mips3’.
Equivalent to ‘-march=mips4’.

Equivalent to ‘-march=mips32’.

Equivalent to ‘-march=mips32r2’.

124 Using the GNU Compiler Collection (GCC)

-mips64 Equivalent to ‘-march=mips64’.

-mipsi16
-mno-mips16
Use (do not use) the MIPS16 ISA.

-mabi=32
-mabi=064
-mabi=n32
-mabi=64
-mabi=eabi
Generate code for the given ABI.

Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to
get 32-bit code instead.

-mabicalls

-mno—-abicalls
Generate (do not generate) SVRd4-style position-independent code.
‘-mabicalls’ is the default for SVR4-based systems.

-mxgot
-mno-xgot
Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it will only work if the GOT is smaller than about
64k. Anything larger will cause the linker to report an error such as:
relocation truncated to fit: R_MIPS_GOT16 foobar

If this happens, you should recompile your code with ‘-mxgot’. It should then
work with very large GOTs, although it will also be less efficient, since it will
take three instructions to fetch the value of a global symbol.

Note that some linkers can create multiple GOTs. If you have such a linker,
you should only need to use ‘-mxgot’ when a single object file accesses more
than 64k’s worth of GOT entries. Very few do.

These options have no effect unless GCC is generating position independent
code.

-membedded-pic

-mno-embedded-pic
Generate (do not generate) position-independent code suitable for some em-
bedded systems. All calls are made using PC relative addresses, and all data
is addressed using the $gp register. No more than 65536 bytes of global data
may be used. This requires GNU as and GNU Id, which do most of the work.

-mgp32 Assume that general-purpose registers are 32 bits wide.
-mgp64 Assume that general-purpose registers are 64 bits wide.
-mfp32 Assume that floating-point registers are 32 bits wide.
-mfp64 Assume that floating-point registers are 64 bits wide.

Chapter 3: GCC Command Options 125

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point
calculations using library calls instead.

-msingle-float
Assume that the floating-point coprocessor only supports single-precision oper-
ations.

-mdouble-float
Assume that the floating-point coprocessor supports double-precision opera-
tions. This is the default.

-mint64 Force int and long types to be 64 bits wide. See ‘-mlong32’ for an explanation
of the default and the way that the pointer size is determined.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the
supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the
64-bit EABI; the others use 32-bit longs. Pointers are the same size as longs,
or the same size as integer registers, whichever is smaller.

-G num Put global and static items less than or equal to num bytes into the small data
or bss section instead of the normal data or bss section. This allows the data
to be accessed using a single instruction.

All modules should be compiled with the same ‘-G num’ value.

-membedded-data

-mno-embedded-data
Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-muninit-const-in-rodata

-mno-uninit-const-in-rodata
Put uninitialized const variables in the read-only data section. This option is
only meaningful in conjunction with ‘-membedded-data’.

-msplit-addresses

-mno-split-addresses
Enable (disable) use of the %hi() and %lo() assembler relocation operators.
This option has been superceded by ‘-mexplicit-relocs’ but is retained for
backwards compatibility.

126 Using the GNU Compiler Collection (GCC)

-mexplicit-relocs

-mno-explicit-relocs
Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use as-
sembler macros instead.

‘-mexplicit-relocs’ is usually the default if GCC was configured to use an
assembler that supports relocation operators. However, there are two excep-
tions:

e GCC is not yet able to generate explicit relocations for the combination
of ‘-mabi=64" and ‘-mno-abicalls’. This will be addressed in a future
release.

e The combination of ‘-mabicalls’ and ‘-fno-unit-at-a-time’ implies
‘-mno-explicit-relocs’ unless explicitly overridden. This is because,
when generating abicalls, the choice of relocation depends on whether a
symbol is local or global. In some rare cases, GCC will not be able to
decide this until the whole compilation unit has been read.

-mrnames
-mno-rnames
Generate (do not generate) code that refers to registers using their software
names. The default is ‘-mno-rnames’, which tells GCC to use hardware names
like ‘44’ instead of software names like ‘a0’. The only assembler known to
support ‘-rnames’ is the Algorithmics assembler.

-mcheck-zero-division

-mno-check-zero—-division
Trap (do not trap) on integer division by zero. The default is
‘-mcheck-zero-division’.

-mmemcpy
-mno-memcpy
Force (do not force) the use of memcpy () for non-trivial block moves. The de-
fault is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.

-mlong-calls

-mno-long-calls
Disable (do not disable) use of the jal instruction. Calling functions using
jal is more efficient but requires the caller and callee to be in the same 256
megabyte segment.

This option has no effect on abicalls code. The default is ‘-mno-long-calls’.

-mmad
-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the
R4650 ISA.

-mfused-madd

-mno-fused-madd
Enable (disable) use of the floating point multiply-accumulate instructions,
when they are available. The default is ‘-mfused-madd’.

Chapter 3: GCC Command Options 127

When multiply-accumulate instructions are used, the intermediate product is
calculated to infinite precision and is not subject to the FCSR, Flush to Zero
bit. This may be undesirable in some circumstances.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.

-mfix-sbl

-mno-fix-sbl
Work around certain SB-1 CPU core errata. (This flag currently works around
the SB-1 revision 2 “F1” and “F2” floating point errata.)

-mflush-func=func

-mno-flush-func
Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common
_flush_func(), that is, the address of the memory range for which the cache
is being flushed, the size of the memory range, and the number 3 (to flush
both caches). The default depends on the target GCC was configured for, but
commonly is either ‘_flush_func’ or ‘__cpu_flush’.

-mbranch-likely

-mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the default
for the selected architecture. By default, Branch Likely instructions may be
generated if they are supported by the selected architecture. An exception
is for the MIPS32 and MIPS64 architectures and processors which implement
those architectures; for those, Branch Likely instructions will not be generated
by default because the MIPS32 and MIPS64 architectures specifically deprecate
their use.

3.17.11 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the 1386 and x86-64 family of computers:
-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The choices for cpu-type are:
1386 Original Intel’s 1386 CPU.
1486 Intel’s 1486 CPU. (No scheduling is implemented for this chip.)

1586, pentium
Intel Pentium CPU with no MMX support.

pentium-mmzx
Intel PentiumMMX CPU based on Pentium core with MMX in-
struction set support.

1686, pentiumpro
Intel PentiumPro CPU.

pentium2 Intel Pentium2 CPU based on PentiumPro core with MMX instruc-
tion set support.

128

Using the GNU Compiler Collection (GCC)

pentiums3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and
SSE instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and
SSE2 instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set
support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.
k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! in-
struction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and
SSE prefetch instructions support.

athlon-4, athlon-zp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced
3dNOW! and full SSE instruction set support.

k8, opteron, athlon6, athlon-fx
AMD K8 core based CPUs with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!
and 64-bit instruction set extensions.)

winchip-c6
IDT Winchip C6 CPU, dealt in same way as 1486 with additional
MMX instruction set support.

winchip2 IDT Winchip2 CPU, dealt in same way as i486 with additional
MMX and 3dNOW! instruction set support.

cd Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)
c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No

scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the 1386 without the ‘-march=cpu-type’ option being used.

-march=cpu-type

Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type’ implies
‘-mtune=cpu-type’.

Chapter 3: GCC Command Options 129

-mcpu=cpu-type

A deprecated synonym for ‘-mtune’.

-m386

-m486
-mpentium
-mpentiumpro

These options are synonyms for ‘-mtune=i386’, ‘-mtune=1i486’,
‘-mtune=pentium’, and ‘-mtune=pentiumpro’ respectively. These synonyms
are deprecated.

-mfpmath=unit

Generate floating point arithmetics for selected unit unit. The choices for unit

are:

‘387’

Sse

‘sse, 387’

-masm=dialect

Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in
80bit precision instead of precision specified by the type resulting
in slightly different results compared to most of other chips. See
‘~ffloat-store’ for more detailed description.

This is the default choice for 1386 compiler.

Use scalar floating point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips,
in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The
earlier version of SSE instruction set supports only single precision
arithmetics, thus the double and extended precision arithmetics is
still done using 387. Later version, present only in Pentium4 and
the future AMD x86-64 chips supports double precision arithmetics
too.

¢ 4

For i387 you need to use ‘-march=cpu-type’, ‘-msse’ or ‘-msse2’
switches to enable SSE extensions and make this option effective.
For x86-64 compiler, these extensions are enabled by default.

The resulting code should be considerably faster in the majority
of cases and avoid the numerical instability problems of 387 code,
but may break some existing code that expects temporaries to be
80bit.

This is the default choice for the x86-64 compiler.

Attempt to utilize both instruction sets at once. This effectively
double the amount of available registers and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well resulting in instable performance.

Output asm instructions using selected